[1] |
周海云, 鲍业闯, 包健, 等. 工业废盐处理处置现状研究进展[J]. 环境科技, 2020, 33(2):70-75.
|
[2] |
丁志广, 郭键柄, 卢超. 化工废盐无害化处理的实验研究[J]. 无机盐工业, 2020, 52(2):58-61.
|
[3] |
姜海超, 申银山, 陈晓飞, 等. 含氰工业废盐中杂质的高温氧化脱除实验研究[J]. 无机盐工业, 2020, 52(2):62-64.
|
[4] |
王利超, 王志良, 马堂文, 等. 模拟氯化钠盐渣的高温处理[J]. 化工环保, 2014, 34(5):419-422.
|
[5] |
Cao M, Liu L, Yu Z, et al. Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 ℃[J]. Corrosion Science, 2018, 133:165-177.
doi: 10.1016/j.corsci.2018.01.033
|
[6] |
李强, 戴世金, 郑怡琳, 等. 工业废盐中有机物脱除和资源化技术进展[J]. 环境工程, 2019, 37(12):200-206.
|
[7] |
李春雨, 蒋旭光, 安春国, 等. 农药生产废渣燃烧/热解特性研究[J]. 中国电机工程学报, 2009, 29(23):45-50.
|
[8] |
董俊佳, 刘志英, 王雷, 等. 医药类废盐渣的燃烧/热解特性及动力学研究[J]. 环境污染与防治, 2019, 41(9):1070-1075.
|
[9] |
廖辉伟, 姜珊, 贾金, 等. 农药含钾废渣的热解动力学[J]. 环境化学, 2012, 31(4):478-482.
|
[10] |
Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Co-mmittee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2):1-19.
doi: 10.1016/j.tca.2011.03.034
|
[11] |
Wang X, Ren Q, Li L, et al. TG-MS analysis of nitrogen transformation during combustion of biomass with municipal sewage sludge[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(3):2061-2068.
doi: 10.1007/s10973-015-4712-z
|
[12] |
苏梦, 祝建中, 朱晓强, 等. 二氰蒽醌农药废盐热处理特性[J]. 科学技术与工程, 2019, 19(24):423-429.
|
[13] |
Yousaf B, Liu G, Abbas Q, et al. Systematic investigation on com-bustion characteristics and emission-reduction mechanism of potentially toxic elements in biomass- and biochar-coal co-combustion systems[J]. Applied Energy, 2017, 208:142-157.
doi: 10.1016/j.apenergy.2017.10.059
|
[14] |
Huang L, Xie C, Liu J, et al. Influence of catalysts on co-combus-tion of sewage sludge and water hyacinth blends as determined by TG-MS analysis[J]. Bioresource Technology, 2018, 247:217-225.
doi: 10.1016/j.biortech.2017.09.039
|
[15] |
Huang J, Liu J, Chen J, et al. Combustion behaviors of spent mush-room substrate using TG-MS and TG-FTIR:Thermal conversion,kinetic,thermodynamic and emission analyses[J]. Bioresource Technology, 2018, 266:389-397.
doi: 10.1016/j.biortech.2018.06.106
|
[16] |
李唯实, 黄泽春, 雷国元, 等. 典型农药废盐热处理过程动力学特征[J]. 中国环境科学, 2018, 38(7):2691-2698.
|
[17] |
张进, 何鑫, 姚思童, 等. 漫反射傅里叶变换红外光谱法定量分析食盐中的硫酸根[J]. 中国调味品, 2015, 40(12):127-131.
|
[18] |
黄欣, 陈业钢, 苏楠楠, 等. 高盐废水分质结晶及资源化利用研究进展[J]. 化学工业与工程, 2019, 36(1):10-23.
|
[19] |
范庆玲, 郭小甫, 袁俊生. 垃圾焚烧飞灰水洗液纯化及无机盐分离[J]. 无机盐工业, 2019, 51(3):67-71.
|
[20] |
Otowa T, Nojima Y, Miyazaji T. Development of KOH activated high surface area carbon and its application to drinking water purification[J]. Carbon, 1997, 35(9):1315-1319.
doi: 10.1016/S0008-6223(97)00076-6
|
[21] |
李建生, 高长青, 王雪, 等. 高性能活性炭开发生产中的无机活化剂[J]. 无机盐工业, 2019, 51(8):1-6.
|
[22] |
Wang J, Lei S, Liang L. Preparation of porous activated carbon from semi-coke by high temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline[J]. Applied Surface Science, 2020, 530.DOI: 10.1016/j.apsusc.2020.147187.
doi: 10.1016/j.apsusc.2020.147187
|