无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ

无机盐工业 ›› 2025, Vol. 57 ›› Issue (8): 102-109.doi: 10.19964/j.issn.1006-4990.2024-0491

• 环境·健康·安全 • 上一篇    下一篇

电解锰渣为主多源固废制备多孔陶粒及固定重金属锰的机理研究

梁庆阳1,2,3(), 薛菲1,2,3, 黄绪泉1,2,3(), 赵小蓉1,2,3, 王豪杰1,2,3, 韩子龙1,2,3, 王俊1,2,3   

  1. 1.三峡库区生态环境教育部工程研究中心(三峡大学),湖北 宜昌 443002
    2.三峡大学水利与环境学院,湖北 宜昌 443002
    3.固体废物处置与资源化利用宜昌市重点实验室(三峡大学),湖北 宜昌 443002
  • 收稿日期:2024-09-10 出版日期:2025-08-10 发布日期:2024-11-25
  • 通讯作者: 黄绪泉(1975— ),男,博士,副教授,主要研究方向为固体废物处置与资源化;E-mail:huangxuquan@126.com
  • 作者简介:梁庆阳(1998— ),男,硕士研究生,主要研究方向为固体废物处置与资源化;E-mail:LiangQY0605@163.com
  • 基金资助:
    湖北省自然科学基金项目(2024AFB158);宜昌市自然科学研究项目(A23-2-020);宜昌市自然科学研究项目(A24-3-007)

Study on mechanism of preparation of porous ceramsite and fixation of heavy metal manganese from electrolytic manganese slag and multi-source solid waste

LIANG Qingyang1,2,3(), XUE Fei1,2,3, HUANG Xuquan1,2,3(), ZHAO Xiaorong1,2,3, WANG Haojie1,2,3, HAN Zilong1,2,3, WANG Jun1,2,3   

  1. 1.Engineering Research Center of Eco-environment in Three Gorges Reservoir Region,Ministry of Education,China Three Gorges University,Yichang 443002,China
    2.College of Hydraulic & Environmental Engineering,China Three Gorges University Yichang 443002,China
    3.Yichang Key Laboratory of Solid Waste Disposal and Resource Utilization(China Three Gorges University),Yichang 443002,China
  • Received:2024-09-10 Published:2025-08-10 Online:2024-11-25

摘要:

以电解锰渣(EMR)为主要原料,城市污泥、石墨尾矿和膨润土为辅料,制备了轻质多孔陶粒。采用X射线衍射、体式显微镜、傅里叶变换红外等技术手段,探究了陶粒孔隙结构的演化机理,并揭示了Mn2+固化机理。结果表明,通过单因素实验法得到最佳实验条件为:EMR和污泥的掺量均为35%(质量分数,下同),石墨尾矿掺量为25%,烧结温度为1 130 ℃、烧结时间为15 min。在该条件下制备的EMR陶粒性能良好,堆积密度为651 kg/m3、表观密度为1 406 kg/m3、筒压强度为3.78 MPa、1 h吸水率为5.36%。在高温烧结过程中,液相包裹陶粒表面有效降低了吸水率,同时内部液相包裹气体形成封闭孔隙结构。Mn2+浸出主要来源于EMR中MnSO4,MnSO4高温分解为可逆反应,封闭气孔中CO、SO2抑制了MnSO4的分解,从而影响Mn2+的固定效果。此外,EMR陶粒中污泥富含Fe2O3,其不仅降低了烧结温度,还促进了高温液相的产生,导致EMR陶粒中存在未分解MnSO4,因此随着EMR和污泥的掺量从35%增加至45%时,Mn2+浸出质量浓度从0.33 mg/L提高到0.84 mg/L。固定重金属锰的机理表现为物理-化学协同作用,一方面,高温液相形成的致密结构将其物理包裹;另一方面,在高温条件下Mn2+能够参与形成锰硅灰石和尖晶石型铁氧体从而实现化学固化。研究在显著提高EMR消纳量的同时,实现了多源固废协同制备陶粒,为大宗固废资源化利用提供了可行途径和技术支撑。

关键词: 电解锰渣, 污泥, 多孔, 陶粒, 重金属固化

Abstract:

A lightweight porous ceramsite was successfully synthesized using electrolytic manganese residue(EMR) as the primary raw material,supplemented by municipal sludge,graphite tailings,and bentonite.The pore structure evolution mechanism of the ceramsite was investigated through advanced analytical techniques,including X-ray diffraction(XRD),stereomicroscopy,and Fourier-transform infrared spectroscopy(FT-IR).Additionally,the curing mechanism of Mn²⁺ was elucidated.The experimental results indicated that optimal conditions,determined via single-factor optimization,including a formulation comprising of 35% EMR and 35% sludge,25% of graphite tailings,a sintering temperature of 1 130 ℃,and a sintering duration of 15 minutes.Under these conditions,the resulting EMR-based ceramsite exhibited favorable physical properties:A bulk density of 651 kg/m³,an apparent density of 1 406 kg/m³,a compressive strength of 3.78 MPa,and a one-hour water absorption rate of 5.36%.During high-temperature sintering,the formation of liquid phase on the ceramsite surface effectively reduced water absorption.Internally,this liquid phase encapsulated gas bubbles,forming a closed-pore structure.The leaching behavior of Mn²⁺ was primarily attributed to MnSO₄ present in the EMR.The thermal decomposition of MnSO₄ was found to be reversible.CO and SO₂ gases trapped within the closed pores inhibited its decomposition,thereby influencing Mn2+ fixation.Furthermore,the presence of Fe₂O₃ from the sludge lowered the sintering temperature and promoted the formation of high-temperature liquid phases,which contributed to the retention of undecomposed MnSO₄.Consequently,increasing the EMR and sludge content from 35% to 45% led to an increase in Mn²⁺ leaching concentration from 0.33 mg/L to 0.84 mg/L.The immobilization mechanism of manganese involved both physical and chemical processes.Physically,the dense structure formed by the high-temperature liquid phase encapsulated Mn species.Chemically,Mn²⁺ participated in the formation of manganese-wollastonite and spinel-type ferrites under elevated temperatures,achieving effective chemical stabilization.This study not only significantly enhanced the utilization rate of EMR but also demonstrated a viable approach for the co-processing of multiple solid wastes into functional materials,offering practical insights and technical support for the resource recovery of large-volume solid waste.

Key words: electrolytic manganese residue, sludge, porous, ceramite, heavy metal solidification

中图分类号: