无机盐工业 ›› 2023, Vol. 55 ›› Issue (10): 24-34.doi: 10.19964/j.issn.1006-4990.2023-0007
收稿日期:
2023-01-04
出版日期:
2023-10-10
发布日期:
2023-10-16
通讯作者:
武开鹏,博士,副教授,主要从事铬冶金及新能源电池材料方面的研究;E-mail:wukaipeng@126.com。作者简介:
徐恩浩(2000— ),男,硕士研究生,研究方向为无机纳米复合材料;E-mail:939329301@qq.com。
基金资助:
Received:
2023-01-04
Published:
2023-10-10
Online:
2023-10-16
摘要:
氧化铬(Cr2O3)是无机盐行业主要产品之一,广泛应用于化工、冶金、机械等领域,在国民经济中具有重要的作用。大量研究表明,当Cr2O3的粒度达到纳米尺度时,将拥有更多独特效应(如小尺寸效应、表面效应等),为新材料的开发应用提供了新思路。结合近年来国内外在纳米Cr2O3研究与应用领域的最新进展,对纳米Cr2O3的制备方法进行了详细综述,主要包括气相法(化学气相沉积法、微波等离子体法、激光气相沉积法)、湿化学法(沉淀法、微乳液法、溶胶-凝胶法、水热/溶剂热法、模板法)和固相法(固相热分解法、高能球磨法);介绍了纳米Cr2O3在除颜料、耐磨防腐蚀涂层、气敏传感器等传统应用场景以外,在高效催化、新能源材料等新兴领域的应用进展。通过总结对比,提出了将湿化学法与固相法结合规模化制备高稳定纳米Cr2O3有效路径的建议。指出“双碳”目标战略背景下,中国能源结构的快速转型将催生纳米Cr2O3在储能体系用关键材料领域的新应用场景。
中图分类号:
徐恩浩, 武开鹏. 纳米氧化铬的制备与应用研究进展[J]. 无机盐工业, 2023, 55(10): 24-34.
XU Enhao, WU Kaipeng. Research progress of preparation and application of nano-sized chromium oxide[J]. Inorganic Chemicals Industry, 2023, 55(10): 24-34.
表2
纳米Cr2O3制备方法对比总结
方法类别 | 典型原料 | 主要工艺 | 产品特性及应用领域 | 优缺点及产业化状况 | |
---|---|---|---|---|---|
气 相 法 | 化学气相沉 积法[ | Cr(CO)6/三乙酰丙酮铬 | 低温下对反应物进行预热,然后在气氛保护下(如N2、H2等)高温反应,冷却 沉积。 | 一般呈小尺度纳米颗粒或薄 膜,可应用于耐磨防腐蚀材 料。 | 优点:粉体材料颗粒均匀、纯度高、分散良好;薄膜表面平整、结构致密、膜基结合性能优异;重复性好。 缺点:对设备要求苛刻、成本高。 产业化情况:很少有企业采用。 |
微波等离子 体法[ | Cr(CO)6 | 通入保护气(如80%Ar+20%O2)和 反应气,在微波作用下形成等离子体进行反应,冷却沉积。 | 粒径在10 nm左右的纳米颗 粒。 | ||
激光气相沉 积法[ | Cr3C2/金属铬 | 在氧气或真空条件下利用激光(KrF 248 nm、Nd:YAG 1 062 nm)瞬间激 活原料,冷却沉积。 | 一般呈小尺度纳米颗粒或薄 膜,可应用于光学器件。 | ||
湿 化 学 法 | 沉淀法[ | Cr(NO3)3/氨水溶液 | 控制沉淀pH,经搅拌、陈化、干燥处 理,最后在500~600 ℃空气煅烧。 | 一般呈小尺度纳米颗粒,可应用于催化剂和能源材料。 | 优点:平均粒径小、粒径分布窄;纯度高、均匀性好、成本低;设备简单,易于实现。 缺点:单次产量较低。 产业化情况:企业多采用沉淀法和溶胶-凝胶法制备纳米Cr2O3。卜微应用材料制备的高纯度纳米Cr2O3的粒径控制在20~ 1 000 nm;亚美纳米制备的材料平均粒径为100 nm,年产量在 公斤级到吨级;乃欧纳米生产的球形颗粒粒径为50~500 nm,年产量可达到吨级以上。 |
微乳液法[ | Cr(NO3)3/乙二胺/助剂 | 将水相和油相混匀,Cr(NO3)3加入后进行长时间搅拌,最后通过热处理或煅烧获得产物。 | 粒径小于100 nm的超细粉体 或组装的特殊结构,可应用于催化剂。 | ||
溶胶-凝胶法[ | Cr(NO3)3/NaOH | 首先制备成溶胶,陈化后得到凝胶, 经过低温干燥后在高温下煅烧。 | 粒径在13~20 nm的纳米颗 粒,可用作颜料。 | ||
水热/溶剂热法[ | CrO3/醇类/Na2CrO4 | 在150~300 ℃反应并经干燥处理后, 在高温下煅烧。 | 粒径在几十纳米的细微颗粒,可用作颜料、磨料及能源材料等。 | ||
模板法[ | Cr(NO3)3/模板剂 | 200 ℃左右进行高温反应后通过酸浸或煅烧去除模板剂,得到最终产物。 | 具有高比表面积的特殊纳米结构,如纳米线、介孔结构等,多用于催化剂。 | ||
固 相 法 | 固相热分解法[ | Cr(NO3)3/(NH4)2Cr2O7 | 将原料按比例研磨混合或经过液相 干燥处理(升华、喷雾干燥等)后在空 气中进行煅烧。 | 大尺度纳米颗粒,经过预先液相干燥处理后可减小粒径,可用作颜料或催化剂。 | 优点:操作方便,设备简单;单次产量较高,能耗较低。 缺点:产品纯度较低、均匀性差,可通过液相干燥工艺改善。 产业化情况:随未来市场需求量增大,将液相干燥工艺与固相热分解结合的多元化制备 将是工业量产的有效途径。 |
高能球磨法[ | Na2Cr2O7/多晶Cr2O3 | 在机械活化条件下,诱发低温化学反应或直接对晶粒进行物理研磨。 | 多为大尺度纳米颗粒。 |
1 | PANG Xiaolu, GAO Kewei, LUO Fei,et al.Investigation of microstructure and mechanical properties of multi-layer Cr/Cr2O3 coatings[J].Thin Solid Films,2009,517(6):1922-1927. |
2 | 杨雄.氧化铬基涂层的制备及其摩擦磨损性能研究[D].武汉:武汉理工大学,2019. |
YANG Xiong.The preparation and tribological properties of Cr2O3-based coating[D].Wuhan:Wuhan University of Technology,2019. | |
3 | ÖZGÜR M E,ULU A, GÜRSES C,et al.The cytotoxicity,DNA fragmentation,and decreasing velocity induced by chromium(Ⅲ) oxide on rainbow trout spermatozoa[J].Biological Trace Element Research,2023,201(2):968-983. |
4 | SADEGHI N, KHORSHIDI A, GANJALI M.Cr2O3 nanoparticles composited with MWCNTs as an efficient electrocatalyst for the oxygen reduction reaction[J].Inorganic Chemistry Communications,2021,126:108489. |
5 | ZHANG Daixiong, LI Xueming, QIN Bo,et al.Fabrication of chromium(Ⅲ) oxide(Cr2O3) coating by electrophoretic deposition[J].Journal of the American Ceramic Society,2014,97(11):3413-3417. |
6 | LIANG Shuting, ZHANG Hongling, LUO Minting,et al.Colour performance investigation of a Cr2O3 green pigment prepared via the thermal decomposition of CrOOH[J].Ceramics International,2014,40(3):4367-4373. |
7 | CAO Jun, XU Yingming, SUI Lili,et al.Highly selective low-temperature triethylamine sensor based on Ag/Cr2O3 mesoporous microspheres[J].Sensors and Actuators B:Chemical,2015,220:910-918. |
8 | LI Yongtao, LIU Yuzhou, SHI Chenyong,et al.Carbon/Cr2O3 nanocrystal composites as an anode with improved lithium storage performance[J].International Journal of Electrochemical Science,2022,17(3):220311. |
9 | LIN H T, HUANG J L, LO W T,et al.Investigation on carbonizing behaviors of nanometer-sized Cr2O3 particles dispersed on alumina particles by metalorganic chemical vapor deposition in fluidized bed[J].Journal of Materials Research,2005,20(8):2154-2160. |
10 | HAFEEZ M, SIDDIQUE SALEEMI A, REHMAN S UR,et al.CVD growth of layered Cr2O3 hexagonal flakes for optoelectronic applications[J].Applied Surface Science,2021,536:147713. |
11 | CHEVALIER S, BONNET G, LARPIN J P.Metal-organic chemical vapor deposition of Cr2O3 and Nd2O3 coatings.Oxide growth kinetics and characterization[J].Applied Surface Science,2000,167(3/4):125-133. |
12 | 李帅,何迪,刘晓鹏,等.一种氧化铬薄膜的制备方法:中国,103805960A[P].2014-05-21. |
13 | VOLLATH D, SZABÓ D V, WILLIS J O.Magnetic properties of nanocrystalline Cr2O3 synthesized in a microwave plasma[J].Materials Letters,1996,29(4/5/6):271-279. |
14 | NADEEM K, KAMRAN M, JAVED A,et al.Role of surface spins on magnetization of Cr2O3 coated γ-Fe2O3 nanoparticles[J].Solid State Sciences,2018,83:43-48. |
15 | BALAKRISHNAN G, KUPPUSAMI P, SAIRAM T N,et al.Influence of background gas atmosphere on formation of Cr2O3 thin films prepared by pulsed laser deposition[J].Surface Engineering,2009,25(3):223-227. |
16 | SI P Z, WANG X L, XIAO X F,et al.Structure and magnetic properties of Cr2O3/CrO2 nanoparticles prepared by reactive laser ablation and oxidation under high pressure of oxygen[J].Journal of Magnetics,2015,20(3):211-214. |
17 | VILA M, RUBIO-ZUAZO J, LUCAS I,et al.Ferromagnetic epitaxial Cr2O3 thin films grown on oxide substrates by pulsed laser deposition[J].Applied Surface Science,2020,534:147638. |
18 | ZHANG Wenxia, LIANG Yan, LUO Jianwei,et al.Morphological effects of ordered Cr2O3 nanorods and Cr2O3 nanoparticles on fluorination of 2-chloro-1,1,1-trifluoroethane[J].Journal of Materials Science,2016,51(13):6488-6496. |
19 | ABBAS S M, AHMAD N, RANA U ALI,et al.High rate capability and long cycle stability of Cr2O3 anode with CNTs for lithium ion batteries[J].Electrochimica Acta,2016,212:260-269. |
20 | ABECASSIS-WOLFOVICH M, ROTTER H, LANDAU M V,et al.Texture and nanostructure of chromia aerogels prepared by urea-assisted homogeneous precipitation and low-temperature supercritical drying[J].Journal of Non-Crystalline Solids,2003,318(1/2):95-111. |
21 | 邓彤彤,彭振山.超细氧化铬制备方法的研究进展[J].无机盐工业,2003,35(4):5-7. |
DENG Tongtong, PENG Zhenshan.Preparation technique of ultra-fine chromium oxide powder[J].Inorganic Chemicals Industry,2003,35(4):5-7. | |
22 | BAI Guangmei, DAI Hongxing, LIU Yuxi,et al.Preparation and catalytic performance of cylinder-and cake-like Cr2O3 for toluene combustion[J].Catalysis Communications,2013,36:43-47. |
23 | 滕飞,宁桂玲,魏国,等.微乳纳米反应器制备单分散性球形氧化铬超细粉的研究[J].中国粉体技术,2000,6(S1):267-269. |
TENG Fei, NING Guiling, WEI Guo,et al.Preparation of mono-dispersed spherical superfine Cr2O3 powder in microemulson system[J].China Powder Science and Technology,2000,6(S1):267-269. | |
24 | 王孝华.纳米氧化铬制备方法研究进展[J].无机盐工业,2009,41(12):5-7,35. |
WANG Xiaohua.Research progress on preparation of nano-sized chromic oxide[J].Inorganic Chemicals Industry,2009,41(12):5-7,35. | |
25 | ALMONTASSER A, PARVEEN A.Preparation and characterization of chromium oxide nanoparticles[C]//AIP Conference Proceedings.3RD International Conference on Condensed Matter and Applied Physics(ICC-2019).Bikaner,India:AIP Publishing,2020. |
26 | ALMONTASSER A, PARVEEN A, HASHIM M,et al.Structural,optical,and antibacterial properties of pure and doped(Ni,Co,and Fe) Cr2O3 nanoparticles:A comparative study[J].Applied Nanoscience,2021,11(2):583-604. |
27 | PEI Zhenzhao, XU Hongbin, ZHANG Yi.Preparation of Cr2O3 nanoparticles via C2H5OH hydrothermal reduction[J].Journal of Alloys and Compounds,2009,468(1/2):L5-L8. |
28 | SHAFI I, LIU Yuanyue, ZENG Gaojie,et al.Cr2O3/rGO nanocomposite with excellent electrochemical capacitive properties[J].SN Applied Sciences,2020,2(11):1836. |
29 | ANANDAN K, RAJENDRAN V.Studies on structural,morphological,magnetic and optical properties of chromium sesquioxi-de(Cr2O3) nanoparticles:Synthesized via facile solvothermal process by different solvents[J].Materials Science in Semiconductor Processing,2014,19:136-144. |
30 | 李波,张波,梁建,等.一种纳米三氧化二铬及其制备方法:中国,114715939A[P].2022-07-08. |
31 | LI L, ZHU Z H, WANG S B,et al.Chromium oxide catalysts for CO x -free hydrogen generation via catalytic ammonia decomposition[J].Journal of Molecular Catalysis A:Chemical,2009,304(1/2):71-76. |
32 | KIM J H, KARNG S W, OH I H,et al.Ortho-para hydrogen conversion characteristics of amorphous and mesoporous Cr2O3 powders at a temperature of 77 K[J].International Journal of Hydrogen Energy,2015,40(41):14147-14153. |
33 | 奚亚男,胡淑锦.一种纳米氧化铬的生物模板制备方法及其在气敏传感中的应用:中国,112429775A[P].2021-03-02. |
34 | 刘玉欣,石凤娟,吕耀辉,等.纳米或多孔氧化铬粒子制备的研究进展[J].无机盐工业,2019,51(10):1-6. |
LIU Yuxin, SHI Fengjuan, Yaohui LÜ,et al.Progress in preparation of nano-sized or porous chromium oxide particles[J].Inorganic Chemicals Industry,2019,51(10):1-6. | |
35 | GHOLAMI S, ALAVI S M, REZAEI M.Synthesis of Cr2O3-Al2O3 powders with various Cr2O3/Al2O3 molar ratios and their applications as support for the preparation of nickel catalysts in CO2 methanation reaction[J].International Journal of Hydrogen Energy,2021,46(7):5311-5322. |
36 | 宁延生.无机盐工艺学[M].北京:化学工业出版社,2013:758-761. |
37 | 梁建,田森,冯海涛,等.一种球状纳米三氧化二铬的制备方法:中国,110697776B[P].2022-03-15. |
38 | 徐国钻,刘如铁,羊求民,等.制备高纯度纳米氧化铬的方法及高纯度纳米氧化铬:中国,111908506A[P].2020-11-10. |
39 | TSUZUKI T, MCCORMICK P G.Synthesis of Cr2O3 nanoparticles by mechanochemical processing[J].Acta Materialia,2000, 48(11):2795-2801. |
40 | SABYASACHI S, MAJUMDAR S, GIRI S.Nanocrystallite interface effect and exchange bias phenomenology in Cr2O3 and NiO nanoparticles[J].Solid State Communications,2011,151(21):1515-1519. |
41 | KAFI-AHMADI L, KHADEMINIA S, POURSATTAR MARJANI A,et al.Microwave-assisted preparation of polysubstituted imidazoles using zingiber extract synthesized green Cr2O3 nanoparticl- es[J].Scientific Reports,2022,12:19942. |
42 | CHEN Xi, CHEN Xi, CAI Songcai,et al.Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs[J].Chemical Engineering Journal,2018,334:768-779. |
43 | WU Zhixing, DENG Jiguang, XIE Shaohua,et al.Mesoporous Cr2O3-supported Au-Pd nanoparticles:High-performance catalysts for the oxidation of toluene[J].Microporous and Mesoporous Materials,2016,224:311-322. |
44 | LIN Jianliang, SPROUL W D.Structure and properties of Cr2O3 coatings deposited using DCMS,PDCMS,and DOMS[J].Surface and Coatings Technology,2015,276:70-76. |
45 | MAO Lin, XIAO Jinkun, SUN Guodong,et al.Microstructure and wear behaviors of Cr2O3-Al2O3 composite coatings deposited by atmospheric plasma spraying[J].Surface and Coatings Technology,2022,444:128619. |
46 | BABU P S,SEN D, JYOTHIRMAYI A,et al.Influence of microstructure on the wear and corrosion behavior of detonation spray-ed Cr2O3-Al2O3 and plasma sprayed Cr2O3 coatings[J].Ceramics International,2018,44(2):2351-2357. |
47 | ZHANG Hongling, LIANG Shuting, LUO Minting,et al.Preparation and color performance control of Cr2O3 green pigment through thermal decomposition of chromium hydroxide precurs- or[J].Materials Letters,2014,117:244-247. |
48 | XIE Dongjin, LUO Qiuyi, ZHOU Shen,et al.One-step preparation of Cr2O3-based inks with long-term dispersion stability for inkjet applications[J].Nanoscale Advances,2021,3(21):6048-6055. |
49 | AI Shuhe, ZHENG Huade, YU Jincheng.Preparation and reflectance spectrum modulation of Cr2O3 green pigment by solution combustion synthesis[J].Materials,2020,13(7):1540. |
50 | LIANG Shuting, ZHANG Hongling, LUO Minting,et al.Preparation of Cr2O3-based pigments with high NIR reflectance via thermal decomposition of CrOOH[J].Transactions of Nonferrous Metals Society of China,2015,25(8):2646-2647. |
51 | WANG Wei, LI Zhenyu, ZHENG Wei,et al.Cr2O3-sensitized ZnO electrospun nanofibers based ethanol detectors[J].Sensors and Actuators B:Chemical,2010,143(2):754-758. |
52 | 姜玮,崔彦发,曾庆毫,等.氧化铟/氧化铬异质材料的制备及其高气敏响应性能研究[J].无机盐工业,2019,51(1):73-77. |
JIANG Wei, CUI Yanfa, ZENG Qinghao,et al.Preparation and high gas sensing performance of In2O3/Cr2O3 heterostructure material[J].Inorganic Chemicals Industry,2019,51(1):73-77. | |
53 | WU Xinyu, WANG Hairong, WANG Jiuhong,et al.VOCs gas sensor based on MOFs derived porous Au@Cr2O3-In2O3 nanorods for breath analysis[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,632:127752. |
54 | CAI Zhicheng, PARK S.Enhancement mechanisms of ethanol-sensing properties based on Cr2O3 nanoparticle-anchored SnO2 nanowires[J].Journal of Materials Research and Technology,2020,9(1):271-281. |
55 | ZHANG Deyin, QIN Mingli, HUANG Min,et al.Facile synthesis of amorphous Cr2O3/N-doped carbon nanosheets and its excellent lithium storage property[J].Journal of the American Ceramic Society,2018,101(7):3234-3243. |
56 | KHAMLICH S, NURU Z Y, BELLO A,et al.Pulsed laser deposited Cr2O3 nanostructured thin film on graphene as anode material for lithium-ion batteries[J].Journal of Alloys and Compoun- ds,2015,637:219-225. |
57 | WANG Buxue, WANG Ziqi, CUI Yuanjing,et al.Cr2O3@TiO2 yolk/shell octahedrons derived from a metal-organic framework for high-performance lithium-ion batteries[J].Microporous and Mesoporous Materials,2015,203:86-90. |
58 | LUO Mei, ORTIZ A L, SHAW L L.Enhancing the electrochemical performance of NaCrO2 through structural defect control[J].ACS Applied Energy Materials,2020,3(7):7216-7227. |
59 | XI Kaiying, CHU Shufen, ZHANG Xiaoyu,et al.A high-performance layered Cr-Based cathode for sodium-ion batteries[J].Nano Energy,2020,67:104215. |
60 | KO W, CHO M K, KANG J,et al.Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition[J].Energy Storage Materials,2022,46:289-299. |
61 | DONG Jia, JIA Jinbiao, SHI Beibei,et al.Cr2O3 interlayer at TiO2/perovskite interface propelling the efficiency improvement of perovskite solar cells[J].Surfaces and Interfaces,2022,29:101761. |
[1] | 汪敏娟, 王重庆. 新型反应器在纳米颗粒制备中的应用研究进展[J]. 无机盐工业, 2024, 56(3): 19-27. |
[2] | 杨卓, 李春雷, 张鑫, 乔勉, 田玉琴, 宫源. 纳米氧化锌液相法制备技术进展[J]. 无机盐工业, 2024, 56(3): 1-11. |
[3] | 张瑞, 王正豪, 陈良, 郭孝东, 罗冬梅. 工业钛液合成钛酸钠负极及其储钠性能[J]. 无机盐工业, 2023, 55(12): 66-73. |
[4] | 武鲁明, 于海斌, 王亚权. 多孔碳基非贵金属氧还原电催化剂研究进展[J]. 无机盐工业, 2023, 55(10): 13-23. |
[5] | 白小洁,曹德富,王君慧,刘昊,廖立兵. 半固态储能电池的研究进展[J]. 无机盐工业, 2022, 54(2): 6-15. |
[6] | 党莹. 纳米颗粒粉煤灰绿色混凝土的耐久性试验研究[J]. 无机盐工业, 2021, 53(7): 96-100. |
[7] | 刘继军,林红梅,胡国荣,彭忠东. 利用铬铁合金生产铬盐的新工艺研究[J]. 无机盐工业, 2021, 53(6): 156-159. |
[8] | 蒋运才,李雪梅,吴兆贤,曹昌蝶,梅毅,廉培超. 黑磷的制备及储能应用研究进展[J]. 无机盐工业, 2021, 53(6): 59-71. |
[9] | 范泽会,张辰,袁博,凌国维. 新型海洋材料在储能领域的应用进展[J]. 无机盐工业, 2021, 53(5): 7-12. |
[10] | 焦帅,衣守志,张红玲,陈辉霞,程西川,张利昌,徐红彬. 反应条件及陈化过程对氢氧化铬氧化速率的影响[J]. 无机盐工业, 2021, 53(10): 59-63. |
[11] | 刘佩文,董鹏,孟奇,杨轩,周思源. 废旧磷酸铁锂电池正极材料固相法再生研究进展[J]. 无机盐工业, 2020, 52(9): 6-8. |
[12] | 滕晓慧,孙丽月,庄立军. 沉钒废水除硅制备冶金级氢氧化铬研究[J]. 无机盐工业, 2020, 52(9): 88-90. |
[13] | 赵艳琴,闫书山,王岭,曹吉林. Ba 2+和In 3+共掺杂硅酸镧固体电解质的制备及性能[J]. 无机盐工业, 2020, 52(1): 49-53. |
[14] | 金建华,李永元,才项措. 响应面分析法优化铝酸锶长余辉发光材料制备工艺研究[J]. 无机盐工业, 2020, 52(1): 59-62. |
[15] | 杜志强,姚光源. 用于储热新型低熔点二元无机盐特性研究[J]. 无机盐工业, 2020, 52(1): 63-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|