[1] |
高春梅, 柳明珠, 吕少瑜, 等. 海藻酸钠水凝胶的制备及其在药物释放中的应用[J]. 化学进展, 2013,25(6):1012-1022.
|
[2] |
段久芳. 天然高分子材料[M]. 武汉: 华中科技大学出版社, 2016.
|
[3] |
Guo R N, Zhang S L, Han W Q, et al. Preparation of an amorphous cross-linked binder for silicon anodes[J]. Chemistry Sustainable Energy Materials, 2019,12:4838-4845.
|
[4] |
Zhang S N, Wang S J, Meng Y Z, et al. Aqueous sodium alginate as binder:Dramatically improving the performance of dilithium terep-hthalate-based organic lithium ion batteries[J]. Journal of Power Sources, 2019.Doi: 10.1016/j.jpowsour.2019.227007 .
|
[5] |
Xu H, Guo S H, Zhou H S, et al. Sodium alginate enabled advanced layered manganese-based cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019,11:26871-26823.
|
[6] |
Kuenzel M, Bresser D, Passerini S, et al. Deriving structure-perfor-mance relations of chemically modified chitosan binders for susta-inable high-voltage LiNi0.5Mn1.5O4 cathodes[J]. Batteries & Super-caps, 2020,3:155-164.
|
[7] |
Yi H, Lan T, Deng Y H, et al. A robust aqueous-processable polymer binder for long-life high-performance lithium sulfur battery[J]. Energy Storage Materials, 2019,21:61-68.
|
[8] |
Lu Y Y, Zhu T Y, Huang K, et al. A semisolid electrolyte for flexi-ble Zn-ion batteries[J]. ACS Applied Energy Materials, 2019(2):904-6910.
|
[9] |
Zhang J J, Liu Z H, Cui G L, et al. Renewable and superior ther-mal-resistant cellulose-based composite nonwoven as lithium-ion battery separator[J]. ACS Applied Materials & Interfaces, 2013,5:128-134.
|
[10] |
Chen Y, Du P F, Xiong J, et al. Electrospun cellulose polymer nano-fiber membrane with flame resistance properties for lithium-ion batteries[J]. Carbohydrate Polymers, 2020,234.Doi: 10.1016/j.car-bpol.2020.115907.
|
[11] |
Fan Y N, Wang T Y, Li Q, et al. Accelerated polysulfide conversion on hierarchical porous vanadium-nitrogen-carbon for advanced lithium-sulfur batteries[J]. Nanoscale, 2020,12(2):584-490.
|
[12] |
Wang X J, Song Y, Zhi L J, et al. All-biomaterial supercapacitor derived from bacterial cellulose[J]. Nanoscale, 2016,8.Doi: 10.1039/c6nr01485b.
|
[13] |
宗飞旭, 潘超, 董丽, 等. 海带基微孔/介孔复合多级孔纳米炭的制备及电化学性能研究[J]. 纳米技术, 2017,7(1):11-20.
|
[14] |
Li D H, Lai C, Yang D J, et al. From double-helix structured sea-weed to S-doped carbon aerogel with ultra-high surface area for energy storage[J]. Energy Storage Materials, 2019,17:22-30.
|
[15] |
Wang J, Zhang P X, Deng S G, et al. Controllable synjournal of bi-functional porous carbon for efficient gas mixture separation and high-performance supercapacitor[J]. Chemical Engineering Journal, 2018,348:57-66.
|
[16] |
Kang D M, Liu Q L, Zhang D, et al. “Egg-Box”-assisted fabrica-tion of porous carbon with small mesopores for high-rate electric-double layer capacitors[J]. ACS Nano, 2015,9(11):11225-11233.
|
[17] |
Peng L, Liu Y L, Zheng M T, et al. Mixed-biomass wastes derived hierarchically porous carbons for high-performance electrochemi-cal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2019,7:10393-10402.
|
[18] |
Shao H Y, Wang F, Huang Y Q, et al. Modified separators coated with a Ca(OH)2-carbon framework derived from crab shells for li-thium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016,4.Doi: 10.1039/C6TA06828F.
|
[19] |
Han J M, Xi B J, Xiong S L, et al. High-surface-area nitrogen/pho-sphorus dual-doped hierarchical porous carbon derived from bio-char for sulfur holder[J]. Chemistry Select, 2018,3:10175-10181.
|
[20] |
Bin D, Guo Z Y, Xia Y Y, et al. Crab-shell induced synjournal of or-dered macroporous carbon nanofıber arrays coupled with MnCo2O4 nanoparticles as bifunctional oxygen catalysts for rechargeable Zn-air batteries[J]. Nanoscale, 2017,9.Doi: 10.1039/c7nr03009f.
|
[21] |
Guo Z Y, Li C, Xia Y Y, et al. Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays:A highly bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries[J]. Journal of Ma-terials Chemistry A, 2016,4:6282-6289.
|
[22] |
Guo Z Y, Wang Y G, Xia Y Y, et al. Synjournal of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery[J]. Journal of Power Sources, 2015,276:181-188.
|
[23] |
Li Z, Ke H Z, Cheng H S, et al. Application of diatomite as an ef-fective polysulfides adsorbent for lithium-sulfur batteries[J]. Jour-nal of Energy Chemistry, 2017,26:1267-1275.
|
[24] |
Cheng H, Cai N, Wang M. Facile and scalable synjournal of micro-mesoporous carbon/magnesium oxide/sulfur composite for lithium-sulfur batteries[J]. Solid State Ionics, 2019,337:12-18.
|
[25] |
Xu Y, Chen J, Zhong S W, et al. Porous diatomite-mixed 1,4,5,8-NTCDA nanowires as high-performance electrode materials for li-thium-ion batteries[J]. Nanoscale, 2019,11:15881-15891.
|
[26] |
尤金跨, 储炜, 林祖赓, 等. 一种新型锂离子蓄电池阴极材料—锰结核的嵌锂行为[J]. 电源技术, 2001,25(2), 94-97.
|
[27] |
陈洪冶, 曾载淋. 矿床成因类型[M]. 北京: 地质出版社, 2014.
|
[28] |
王帅, 刘庆友. 大块状黄铁矿的高温高压烧结与电化学实验研究[C]// 中国矿物岩石地球化学学会第17届学术年会论文摘要集.杭州:中国矿物岩石地球化学学会, 2019.
|
[29] |
Yuvaraj S, Veerasubramani G K, Kim D W, et al. Facile synjournal of FeS2/MoS2 composite intertwined on rGO nanosheets as a high-performance anode material for sodium-ion battery[J]. Journal of Alloys and Compounds, 2020,821.Doi: 10.1016/j.jallcom.2019. 153222.
|
[30] |
Zeng J, Wang, X F, Liu, J, et al. Micro-sized FeS2@FeSO4 core-shell composite for advanced lithium storage[J]. Journal of Alloys and Compounds, 2020,814.Doi: 10.1016/j.jallcom.2019.151922.
|
[31] |
Li Q C, Sun J Y, Liu Z F, et al. Biotemplating growth of nepenthes-like n doped graphene as a bifunctional polysulfide scavenger for Li-S batteries[J]. ACS Nano, 2018,12:10240-10250.
|
[32] |
Chen K, Gao T, Liu Z F, et al. Growing three-dimensional biomor-phic grapheme powders using naturally abundant diatomite tem-plates towards high solution processability[J]. Nature Communica-tions, 2016,7.Doi: 10.1038/ncomms13440.
|
[33] |
Li J Q, Zhang J, Liu Z F, et al. Diatomite-templated synjournal of frees-tanding 3D graphdiyne for energy storage and catalysis applica-tion[J]. Advanced Materials, 2018,30.Doi: 10.1002/adma.201800548.
|
[34] |
Zhou F, Cui Y, Yu S H, et al. Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteri-es[J]. Nature Communications, 2019,10.Doi: 10.1038/s41467-019-10473-w.
|