无机盐工业 ›› 2021, Vol. 53 ›› Issue (6): 59-71.doi: 10.19964/j.issn.1006-4990.2021-0245
蒋运才1,2,3,4(),李雪梅1,2,3,4,吴兆贤1,2,3,4,曹昌蝶1,梅毅1,2,3,廉培超1,2,3()
收稿日期:
2021-04-21
出版日期:
2021-06-10
发布日期:
2021-07-08
作者简介:
蒋运才(1995— ),男,硕士研究生,主要从事纳米黑磷的催化法制备及储能应用研究。E-mail: 基金资助:
Jiang Yuncai1,2,3,4(),Li Xuemei1,2,3,4,Wu Zhaoxian1,2,3,4,Cao Changdie1,Mei Yi1,2,3,Lian Peichao1,2,3()
Received:
2021-04-21
Published:
2021-06-10
Online:
2021-07-08
摘要:
黑磷作为一种新型的精细磷化工产品,因其高的理论比容量、高的载流子迁移率及良好的导电性而在储能领域具有很好的应用前景。近年来,针对黑磷、纳米黑磷的制备及其储能应用,涌现出了许多新技术、新方法与新策略。在黑磷的制备方面,开发了加压法(高压法、机械球磨法)和催化法(铋熔化法、汞回流法、矿化法)制备技术,但仍未能实现黑磷的连续化制备;在纳米黑磷的制备方面,开发了自上而下法(机械剥离法、超声剥离法、剪切剥离法、电化学剥离法)和自下而上法(溶剂热法、化学气相沉积法),然而,高质量、高产率纳米黑磷的精确可控制备技术还有待开发。此外,黑磷在应用于储能领域时,大的体积膨胀使得电池储能性能变差,通过纳米化并与其他材料复合制备纳米黑磷基复合材料,发挥协同作用,一定程度上能够缓解以上问题。从黑磷、纳米黑磷的制备及其在储能领域的应用三个方面进行综述,旨在为高品质黑磷及纳米黑磷的高效率、低成本、可控及规模化制备提供借鉴思路,为其在储能领域的发展方向奠定基础。
中图分类号:
蒋运才,李雪梅,吴兆贤,曹昌蝶,梅毅,廉培超. 黑磷的制备及储能应用研究进展[J]. 无机盐工业, 2021, 53(6): 59-71.
Jiang Yuncai,Li Xuemei,Wu Zhaoxian,Cao Changdie,Mei Yi,Lian Peichao. Research progress on preparation and application in energy storage of black phosphorus[J]. Inorganic Chemicals Industry, 2021, 53(6): 59-71.
[1] | Li B, Lai C, Zeng G, et al. Black phosphorus a rising star 2D nano-material in the post-graphene rra:Synjournal properties modifications and photocatalysis applications[J]. Small, 2019,15(8).Doi: 10.1002/smll.201804565. |
[2] |
Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries[J]. Advanced Materials, 2007,19(18):2465-2468.
doi: 10.1002/(ISSN)1521-4095 |
[3] |
Ren X L, Lian P C, Xie D L, et al. Properties,preparation and app-lication of black phosphorus/phosphorene for energy storage:A re-view[J]. Journal of Materials Science, 2017,52(17):10364-10386.
doi: 10.1007/s10853-017-1194-3 |
[4] |
Bridgman P W. Two new modifactions of phosphorus[J]. Journal of the American Chemical Society. 1914,36:1344-1363.
doi: 10.1021/ja02184a002 |
[5] |
Akahama Y, Endo S, Narita S. Electrical properties of black phos-phorus single crystals[J]. Journal of the Physical Society of Japan, 1983,52(6):2148-2155.
doi: 10.1143/JPSJ.52.2148 |
[6] | Dahbi M, Yabuuchi N, Fukunishi M, et al. Black phosphorus as a high-capacity,high-capability negative electrode for sodium-ion batteries:Investigation of the electrode/electrolyte interface[J]. Che-mistry of Materials, 2016,28(6):1625-1635. |
[7] |
Günther P L, Gesslle P, Rebentisch W. Untersuchungen zum diama-ntproblem[J]. Zeitschrift für anorganische und allgemeine Chemie, 1943,250(3/4):357-372.
doi: 10.1002/zaac.19432500314 |
[8] |
Nagao M, Hayashi A, Tatsumisago M. All-solid-state lithium secon-dary batteries with high capacity using black phosphorus negative electrode[J]. Journal of Power Sources, 2011,196(16):6902-6905.
doi: 10.1016/j.jpowsour.2010.12.055 |
[9] |
Krebs H, Weitz H, Worms K H. über die struktur und eigenschaften der halbmetalle.Viii.Die katalytische darstellung des schwarzen phosphors[J]. Zeitschrift für anorganische und allgemeine Chemie, 1955,280(1/2/3):119-133.
doi: 10.1002/(ISSN)1521-3749 |
[10] |
Maruyama Y, Suzuki S, Kobayashi K, et al. Synjournal and some pro-perties of black phosphorus single crystals[J]. Physica B+C, 1981,105(1):99-102.
doi: 10.1016/0378-4363(81)90223-0 |
[11] |
Baba M, Izumida F, Takeda Y, et al. Preparation of black phospho-rus single crystals by a completely closed bismuth-flux method and their crystal morphology[J]. Japanese Journal of Applied Physics, 1989,28(6R):1019-1022.
doi: 10.1143/JJAP.28.1019 |
[12] |
Lange S, Schmidt P, Nilges T. Au3SnP7@Black phosphorus:An easy access to black phosphorus[J]. Inorganic Chemistry, 2007,46(10):4028-4035.
doi: 10.1021/ic062192q |
[13] |
Nilges T, Kersting M, Pfeifer T. A fast low-pressure transport route to large black phosphorus single crystals[J]. Journal of Solid State Chemistry, 2008,181(8):1707-1711.
doi: 10.1016/j.jssc.2008.03.008 |
[14] |
Koepf M, Eckstein N, Pfister D, et al. Access and in situ growth of phosphorene-precursor black phosphorus[J]. Journal of Crystal Growth, 2014,405(1):6-10.
doi: 10.1016/j.jcrysgro.2014.07.029 |
[15] | Zhang Z M, Xin X, Yan Q F, et al. Two-step heating synjournal of sub-3 millimeter-sized orthorhombic black phosphorus single cry-stal by chemical vapor transport reaction method[J]. Science Chi-na Materials, 2016,59(2):122-134. |
[16] |
Zhao M, Niu X, Guan L, et al. Understanding the growth of black phosphorus crystals[J]. CrystEngComm, 2016,18(40):7737-7744.
doi: 10.1039/C6CE01608A |
[17] |
Li S, Liu X Y, Fan X, et al. New strategy for black phosphorus cry-stal growth through ternary clathrate[J]. Crystal Growth & Design, 2017,17(12):6579-6585.
doi: 10.1021/acs.cgd.7b01239 |
[18] | 王波, 汤永威, 郭瑞玲, 等. 黑磷的低成本制备研究[J]. 无机盐工业, 2018,50(2):29-32. |
[19] | 卢秋菊, 汤永威, 赵俊平, 等. 高纯黑磷的低成本宏量制备研究[J]. 磷肥与复肥, 2019,34(9):43-47. |
[20] |
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transisto-rs[J]. Nature Nanotechnology, 2014,9(5):372-377.
doi: 10.1038/nnano.2014.35 |
[21] |
Lu W L, Nan H Y, Hong J H, et al. Plasma-assisted fabrication of monolayer phosphorene and its raman characterization[J]. Nano Research, 2014,7(6):853-859.
doi: 10.1007/s12274-014-0446-7 |
[22] |
Brent J R, Savjani N, Lewis E A, et al. Production of few-layer pho-sphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014,50(87):13338-13341.
doi: 10.1039/C4CC05752J |
[23] | Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond elec-tronics[J]. Nature Communications, 2015,6(2):11-13. |
[24] |
Late D J. Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor[J]. Microporous and Mesoporous Materials, 2016,225(1):494-503.
doi: 10.1016/j.micromeso.2016.01.031 |
[25] | Zhao W C, Xue Z M, Wang J F, et al. Large-scale,highly efficient, and green liquid-exfoliation of black phosphorus in ionic liqui-ds[J]. ACS Applied Materials & Interfaces, 2015,7(50):27608-27612. |
[26] | Su S P, Xu B Y, Ding J H, et al. Large-yield exfoliation of few-layer black phosphorus nanosheets in liquid[J]. New Journal of Chemi-stry, 2019,43(48):19365-19371. |
[27] | Yasaei P, Kumar B, Foroozan T, et al. High-quality black phospho-rus atomic layers by liquid-phase exfoliation[J]. Advanced Mate-rials, 2015,27(11):1887-1892. |
[28] | Yang Y, Chen X, Lian P, et al. Production of phosphorene from bl-ack phosphorus via sonication and microwave co-assisted aqueous phase exfoliation[J]. Chemistry Letters, 2018,47(12):1478-1481. |
[29] |
Sofer Z, Bouša D, Luxa J, et al. Few-layer black phosphorus nano-nanoparticles[J]. Chemical Communications, 2016,52(8):1563-1566.
doi: 10.1039/C5CC09150K |
[30] |
Ambrosi A, Sofer Z, Pumera M, et al. Electrochemical exfoliation of layered black phosphorus into phosphorene[J]. Angewandte Chemie International Edition, 2017,56(35):10443-10445.
doi: 10.1002/anie.v56.35 |
[31] |
Luo F, Wang D Y, Zhang J D, et al. Ultrafast cathodic exfoliation of few-layer black phosphorus in aqueous solution[J]. ACS Applied Nano Materials, 2019,2(6):3793-3801.
doi: 10.1021/acsanm.9b00667 |
[32] | Zu L, Gao X, Lian H, et al. Electrochemical prepared phosphorene as a cathode for supercapacitors[J]. Journal of Alloys and Compo-unds, 2019,770:26-34. |
[33] |
Liu H, Lian P, Tang Y, et al. The preparation of black phosphorus quantum dots by gas exfoliation with the assistance of liquid N2[J]. Journal of Nanoscience and Nanotechnology, 2020,20(10):6458-6462.
doi: 10.1166/jnn.2020.18578 |
[34] | Baboukani A R, Khakpour I, Drozd V, et al. Single-step exfoliation of black phosphorus and deposition of phosphorene via bipolar electrochemistry for capacitive energy storage application[J]. Jo-urnal of Materials Chemistry A, 2019,7(44):25548-25556. |
[35] | Zhang Y, Hao F, Xiao H, et al. Hydrogen separation by porous pho-sphorene:A periodical DFT study[J]. International Journal of Hy-drogen Energy, 2016,41(48):23067-23074. |
[36] | Liu H, Lian P, Zhang Q, et al. The preparation of holey phospho-rene by electrochemical assistance[J]. Electrochemistry Commu-nications, 2019,98:124-128. |
[37] |
Tian B, Tian B, Smith B, et al. Supported black phosphorus nano-sheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K[J]. Nature Communications, 2018,9(1):1-11.
doi: 10.1038/s41467-017-02088-w |
[38] |
Hua R N, Tian B N, Tian B, et al. Facile bottom-up synjournal of partially oxidized black phosphorus nanosheets as metal-free pho-tocatalyst for hydrogen evolution[J]. Proceedings of the National Academy of Sciences, 2018,115(17):4345-4350.
doi: 10.1073/pnas.1800069115 |
[39] | Zhu S, Liang Q, Xu Y, et al. Facile solvothermal synjournal of black phosphorus nanosheets from red phosphorus for efficient photoca-talytic hydrogen evolution[J]. European Journal of Inorganic Che-mistry, 2020(9):773-779 |
[40] | Li C M, Chen G, Sun J X, et al. A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production[J]. ACS Applied Materials & Interfaces, 2015,7(46):25716-25724. |
[41] | Izquierdo N, Myers J C, Seaton N C A, et al. Thin-film deposition of surface passivated balck phosphorus[J]. ACS nano, 2019,13(6):7019-7099 |
[42] | Xu Y, Shi X, Zhang Y, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon[J]. Nature Co-mmunications, 2020,11(1):1-8. |
[43] |
Han D, Liu Q M, Zhang Q, et al. Synjournal of highly crystalline bl-ack phosphorus thin films on GaN[J]. Nanoscale, 2020,12(48):24429-24436.
doi: 10.1039/D0NR06764D |
[44] |
Sun J, Zheng G Y, Lee H W, et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nano-particle-graphite composite battery anodes[J]. Nano Letters, 2014,14(8):4573-4580.
doi: 10.1021/nl501617j |
[45] |
Liu H H, Lian P C, Tang Y W, et al. Facile synjournal of an air-sta-ble 3D reduced graphene oxide-phosphorene composite by sonication[J]. Applied Surface Science, 2019,476:972-981.
doi: 10.1016/j.apsusc.2019.01.248 |
[46] | Li H, Lian P, Lu Q, et al. Excellent air and water stability of two-dimensional black phosphorene/MXene heterostructure[J]. Mate-rials Research Express, 2019,6(6).Doi: 10.1088/2053-1591/ab0b84. |
[47] | Liu H, Zou Y, Tao L, et al. Sandwiched thin-film anode of chemi-cally bonded black phosphorus/graphene hybrid for lithium-ion battery[J]. Small, 2017,13(33).Doi: 10.1002/smll.201700758. |
[48] |
Jin H, Xin S, Chuang C, et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage[J]. Science, 2020,370(6513):192-197.
doi: 10.1126/science.aav5842 |
[49] | Sun J, Lee H W, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J]. Na-ture Nanotechnology, 2015,10(11) :980-985. |
[50] |
Li M Y, Muralidharan N, Moyer K, et al. Solvent mediated hybrid 2D materials:Black phosphorus-graphene heterostructured build-ing blocks assembled for sodium ion batteries[J]. Nanoscale, 2018,10(22):10443-10449.
doi: 10.1039/C8NR01400K |
[51] | Meng R, Huang J, Feng Y, et al. Black phosphorus quantum dot/ Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage[J]. Advanced Energy Materials, 2018,8(26).Doi: 10.1002/aenm.201801514. |
[52] |
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocry-stals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011,23(37):4248-4253.
doi: 10.1002/adma.201102306 |
[53] | Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and ni-trides(MXenes) for energy storage[J]. Nature Reviews Materials, 2017,2(2).Doi: 10.1038/natrevmats.2016.98. |
[54] |
Xie X, Zhao M Q, Anasori B, et al. Porous heterostructured MXene/ carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016,26:513-523.
doi: 10.1016/j.nanoen.2016.06.005 |
[55] |
Chen H, Cong T N, Yang W, et al. Progress in electrical energy sto-rage system:A critical review[J]. Progress in Natural Science, 2009,19(3):291-312.
doi: 10.1016/j.pnsc.2008.07.014 |
[56] |
Han J, Li G N, Liu F, et al. Investigation of K3V2 (PO4)3/C nanoco-mposites as high-potential cathode materials for potassium-ion bat-teries[J]. Chemical Communications, 2017,53(11):1805-1808.
doi: 10.1039/C6CC10065A |
[57] |
Yang W W, Lu Y X, Zhao C X, et al. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries[J]. Electronic Materials Letters, 2020,16(1):89-98.
doi: 10.1007/s13391-019-00178-z |
[58] |
Sultana I, Rahman M M, Ramireddy T, et al. High capacity potassi-um-ion battery anodes based on black phosphorus[J]. Journal of Materials Chemistry A, 2017,5(45):23506-23512.
doi: 10.1039/C7TA02483E |
[59] |
Sultana I, Ramireddy T, Rahman M M, et al. Tin-based composite anodes for potassium-ion batteries[J]. Chemical Communications, 2016,52(59):9279-9282.
doi: 10.1039/C6CC03649J |
[60] |
Jian Z L, Luo W, Ji X L. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015,137(36):11566- 11566-11569.
doi: 10.1021/jacs.5b06809 |
[61] |
Wu X, Zhao W, Wang H, et al. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for po-tassium-ion batteries[J]. Journal of Power Sources, 2018,378:460-467.
doi: 10.1016/j.jpowsour.2017.12.077 |
[62] |
Wu X M, Wang H, Zhao Z L, et al. Interstratification-assembled 2D black phosphorene and V2CTx MXene as superior anodes for boost-ing potassium-ion storage[J]. Journal of Materials Chemistry A, 2020,8(25):12705-12715.
doi: 10.1039/D0TA04506C |
[63] |
Zhao J X, Yang Y, Katiyar R S, et al. Phosphorene as a promising anchoring material for lithium-sulfur batteries:A computational stu-dy[J]. Journal of Materials Chemistry A, 2016,4(16):6124-6130.
doi: 10.1039/C6TA00871B |
[64] | Zhang Q, Xiao Y, Fu Y, et al. Theoretical prediction of B/Al-doped black phosphorus as potential cathode material in lithium-sulfur batteries[J]. Applied Surface Science, 2020,512.Doi: 10.1016/j.apsusc.2020.145639. |
[65] | Ren W C, Singh C V, Koratkar N K, et al. Phosphorene as a poly-sulfide immobilizer and catalyst in high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017,29(2).Doi: 10.1002/adma. 201602734. |
[66] |
Xu Z L, Lin S, Onofrio N, et al. Exceptional catalytic effects of bl-ack phosphorus quantum dots in shuttling-free lithium sulfur batteries[J]. Nature Communications, 2018,9(1):1-11.
doi: 10.1038/s41467-017-02088-w |
[67] | Sun J, Sun Y, Pasta M, et al. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries[J]. Adv-anced Materials, 2016,28(44):9797-9803. |
[68] |
Hao C, Yang B, Wen F, et al. Flexible all-solid-state supercapaci-tors based on liquid-exfoliated black-phosphorus nanoflakes[J]. Advanced Materials, 2016,28(16):3194-3201.
doi: 10.1002/adma.201505730 |
[69] |
Chen X, Xu G, Ren X, et al. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and super-capacitors[J]. Journal of Materials Chemistry A, 2017,5(14):6581-6588.
doi: 10.1039/C7TA00455A |
[70] | Yang B C, Hao C X, Wen F S, et al. Flexible black-phosphorus nanoflake/carbon nanotube composite paper for high-performance all-solid-state supercapacitors[J]. ACS Applied Materials & Inter-faces, 2017,9(51):44478-44484. |
[71] |
Sajedi Moghaddam A, Mayorga Martinez C C, Sofer Z, et al. Black phosphorus nanoflakes/polyaniline hybrid material for high-perfor-mance pseudocapacitors[J]. The Journal of Physical Chemistry C, 2017,121(37):20532-20538.
doi: 10.1021/acs.jpcc.7b06958 |
[72] | Luo S J, Zhao J L, Zou J F, et al. Self-standing polypyrrole/black phosphorus laminated film:Promising electrode for flexible super-capacitor with enhanced capacitance and cycling stability[J]. ACS Applied Materials & Interfaces, 2018,10(4):3538-3548. |
[73] | Wen M, Liu D, Kang Y, et al. Synjournal of high-quality black phos-phorus sponges for all-solid-state supercapacitors[J]. Materials Ho-rizons, 2019,6(1):176-181. |
[74] | Li Q F, Wan X G, Duan C G, et al. Theoretical prediction of hydro-gen storage on Li-decorated monolayer black phosphorus[J]. Jour-nal of Physics D:Applied Physics, 2014,47(46).Doi: 10.1088/0022-3727/47/46/465302. |
[75] | Yu Z, Wan N, Lei S, et al. Enhanced hydrogen storage by using lit-hium decoration on phosphorene[J]. Journal of Applied Physics, 2016,120(2).Doi: 10.1063/1.4958695. |
[76] |
Haldar S, Mukherjee S, Ahmed F, et al. A first principles study of hydrogen storage in lithium decorated defective phosphorene[J]. International Journal of Hydrogen Energy, 2017,42(36):23018-23027.
doi: 10.1016/j.ijhydene.2017.07.143 |
[77] |
Zhang H, Hu W, Du A, et al. Doped phosphorene for hydrogen capt-ure:A DFT study[J]. Applied Surface Science, 2018,433:249-255.
doi: 10.1016/j.apsusc.2017.09.243 |
[78] | Yu Z, Lei S, Wan N, et al. Effect of metal adatoms on hydrogen ad-sorption properties of phosphorene[J]. Materials Research Expre-ss, 2017,4.Doi: 10.1088/2053-1591/aa6ac0. |
[1] | 杨卓, 李春雷, 张鑫, 乔勉, 田玉琴, 宫源. 纳米氧化锌液相法制备技术进展[J]. 无机盐工业, 2024, 56(3): 1-11. |
[2] | 张瑞, 王正豪, 陈良, 郭孝东, 罗冬梅. 工业钛液合成钛酸钠负极及其储钠性能[J]. 无机盐工业, 2023, 55(12): 66-73. |
[3] | 徐恩浩, 武开鹏. 纳米氧化铬的制备与应用研究进展[J]. 无机盐工业, 2023, 55(10): 24-34. |
[4] | 卢晓敏,李雪梅,刘岚君,沈晓芳,梅毅,廉培超. 黑磷的液相法制备研究进展[J]. 无机盐工业, 2022, 54(3): 31-37. |
[5] | 白小洁,曹德富,王君慧,刘昊,廖立兵. 半固态储能电池的研究进展[J]. 无机盐工业, 2022, 54(2): 6-15. |
[6] | 刘畅,段尊斌,汪建南,马会娟,王佳宏,喻学锋. 新型无机磷基阻燃剂的研究进展[J]. 无机盐工业, 2022, 54(11): 8-17. |
[7] | 侯冉冉,曹昌蝶,刘岚君,李光能,梅毅,廉培超. 电化学剥离黑磷制备纳米黑磷研究进展[J]. 无机盐工业, 2021, 53(6): 95-100. |
[8] | 杨环环,喻彬璐,王佳宏,喻学锋. 二维黑磷的制备、表面功能化与光电催化[J]. 无机盐工业, 2021, 53(5): 13-20. |
[9] | 范泽会,张辰,袁博,凌国维. 新型海洋材料在储能领域的应用进展[J]. 无机盐工业, 2021, 53(5): 7-12. |
[10] | 杜志强,姚光源. 用于储热新型低熔点二元无机盐特性研究[J]. 无机盐工业, 2020, 52(1): 63-67. |
[11] | 张焘;曾亮;张东. 膨胀石墨、石墨烯改善无机盐相变材料热物性能[J]. 无机盐工业, 2010, 0(5): 0-0. |
[12] | 张 焘;张 东. 无机盐高温相变储能材料的研究进展与应用[J]. 无机盐工业, 2008, 0(4): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|