无机盐工业 ›› 2023, Vol. 55 ›› Issue (11): 27-36.doi: 10.19964/j.issn.1006-4990.2023-0001
田朋1,2(), 周若辉1, 徐前进2, 刘坤吉2, 庞洪昌1, 宁桂玲1
收稿日期:
2023-01-01
出版日期:
2023-11-10
发布日期:
2023-11-16
作者简介:
田朋(1983— ),男,博士,副教授,主要研究方向为精细氧化铝合成的化学与化工基础;E-mail:tianpeng@dlut.edu.cn。
基金资助:
TIAN Peng1,2(), ZHOU Ruohui1, XU Qianjin2, LIU Kunji2, PANG Hongchang1, NING Guiling1
Received:
2023-01-01
Published:
2023-11-10
Online:
2023-11-16
摘要:
深入探究薄水铝石的粒径调控及其转变成氧化铝的热分解机理对精细氧化铝的合成具有重要意义。采用拟薄水铝石作为晶种辅助氢氧化铝水热调控薄水铝石颗粒尺寸,并探究了该方法的普适性;通过对不同粒径薄水铝石的煅烧实验及脱水过程进行动力学分析,探究粒径对薄水铝石转变过程的影响机理。结果表明:加入不同比例的拟薄水铝石晶种可以制备出平均粒径D50分别为2.02、0.96、0.66 μm的薄水铝石微晶,不同工艺生产的晶种具有相同的调控效果;不同粒径的薄水铝石的脱水过程受不同动力学反应机理控制,且随着粒径的减小,脱水过程的活化能逐渐降低。该研究为调变薄水铝石颗粒尺寸提供一条新的有效途径,为薄水铝石作为前驱体制备精细氧化铝提供理论基础。
中图分类号:
田朋, 周若辉, 徐前进, 刘坤吉, 庞洪昌, 宁桂玲. 不同粒径薄水铝石微晶的合成及其脱水动力学分析[J]. 无机盐工业, 2023, 55(11): 27-36.
TIAN Peng, ZHOU Ruohui, XU Qianjin, LIU Kunji, PANG Hongchang, NING Guiling. Synthesis and dehydration dynamics of boehmite microcrystalline with different particle sizes[J]. Inorganic Chemicals Industry, 2023, 55(11): 27-36.
表6
样品1#、2#、3#的线性拟合结果
模型 | 样品1# | 样品2# | 样品3# | |||||
---|---|---|---|---|---|---|---|---|
相关 系数 | 截距 | 相关 系数 | 截距 | 相关 系数 | 截距 | |||
D1 | 0.965 3 | -0.080 9 | 0.993 6 | -0.080 8 | 0.984 8 | -0.095 8 | ||
D2 | 0.953 7 | -0.062 9 | 0.984 8 | -0.075 6 | 0.972 0 | -0.084 5 | ||
D3 | 0.941 2 | -0.022 1 | 0.969 0 | -0.031 7 | 0.955 1 | -0.034 1 | ||
D4 | 0.949 3 | -0.016 4 | 0.979 8 | -0.021 0 | 0.966 3 | -0.023 1 | ||
D5 | 0.920 0 | -0.053 1 | 0.936 0 | -0.103 2 | 0.924 9 | -0.106 6 | ||
R2 | 0.997 1 | -0.001 5 | 0.969 8 | 0.009 7 | 0.994 6 | -0.002 5 | ||
R3 | 0.997 1 | -0.001 0 | 0.969 8 | 0.006 4 | 0.994 6 | -0.001 6 | ||
C1.5 | 0.960 0 | -0.100 9 | 0.978 9 | -0.152 9 | 0.965 5 | -0.173 9 | ||
C2 | 0.946 7 | -0.350 7 | 0.961 4 | -0.618 0 | 0.948 1 | -0.668 5 | ||
A1 | 0.974 0 | -0.105 3 | 0.993 3 | -0.130 7 | 0.982 7 | -0.165 7 | ||
A1.5 | 0.987 2 | -0.014 6 | 0.998 5 | -0.017 8 | 0.994 4 | -0.049 3 | ||
A2 | 0.987 7 | 0.025 4 | 0.996 5 | 0.024 9 | 0.997 4 | -0.002 1 | ||
A3 | 0.969 9 | 0.051 8 | 0.988 8 | 0.050 0 | 0.969 9 | 0.051 8 | ||
P1 | 0.997 1 | -0.003 1 | 0.969 8 | 0.019 3 | 0.997 1 | -0.003 1 | ||
P2 | 0.952 9 | 0.065 4 | 0.874 7 | 0.076 1 | 0.952 9 | 0.065 4 | ||
P3 | 0.830 2 | 0.074 7 | 0.780 6 | 0.078 0 | 0.830 2 | 0.074 7 | ||
P4 | 0.692 9 | 0.071 5 | 0.695 3 | 0.071 3 | 0.692 9 | 0.071 5 |
1 | STAMIRES D, O'CONNOR P, PEARSON G,et al.Process for the preparation of quasi-crystalline boehmites from inexpensive precursors:US,6689333[P].2004-02-10. |
2 | KARGER-KOCSIS J, LENDVAI L.Polymer/boehmite nanocomposites:A review[J].Journal of Applied Polymer Science,2018,135(24):45573. |
3 | NISHIMURA S, LE S D, ASAI Y,et al.Boehmite-derived aluminum oxide catalyst for a continuous intramolecular aldol condensation of 2,5-hexanedione to 3-methyl-2-cyclopentenone in a liquid-flow reactor system[J].Chemistry Letters,2022,51(2):131- 134. |
4 | RAVINDRAN A R, LADANI R B, ZAVABETI A,et al.Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy composites[J].Composites Science and Technology,2019,181:107708. |
5 | 曹伟娜,任昆仑,李莉,等.勃姆石改性PET复合材料的阻燃和增强机理研究[J].中国塑料,2019,33(7):32-37. |
CAO Weina, REN Kunlun, LI Li,et al.Flame retardancy and reinforcing mechanism of boehemite-modified PET composites[J].China Plastics,2019,33(7):32-37. | |
6 | 虞瑞雷,叶定坤,叶耀挺,等.勃姆石协同氢氧化镁阻燃尼龙复合材料及其制备方法和应用:中国,110343383B[P].2022-04-01. |
7 | WANG Yuan, WANG Qiulin, WEI Xiuqin,et al.A novel three-dimensional boehmite nanowhiskers network-coated polyethylene separator for lithium-ion batteries[J].Ceramics International,2021,47(7):10153-10162. |
8 | ZHONG Guobin, WANG Yong, WANG Chao,et al.An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator[J].Ionics,2019,25(6):2677-2684. |
9 | WANG Yuan, WANG Qiulin, LAN Yu,et al.Aqueous aluminide ceramic coating polyethylene separators for lithium-ion batteri- es[J].Solid State Ionics,2020,345:115188. |
10 | LIU Kefan, YANG Chengyuan, LI Xiaogang,et al.Controllable coaxial coating of boehmite on the surface of polyimide nanofiber membrane and its application as a separator for lithium-ion batteries[J].Energy Technology,2022,10(4):2100982. |
11 | GOONERATNE R, IROH J O.Thermomechanical and pre-ignition properties of multicomponent poly(vnylidene fluoride)/aluminum oxide/single-walled carbon nanotube hybrid nanocomposites[J].Journal of Composites Science,2022,6(12):380. |
12 | NOWECK K, SCHIMANSKI J, JUHL J,et al.Boehmitic aluminas,and high-temperature stabile and highly porous aluminum oxides in a pure phase which are obtained therefrom:US,6773690[P].2004-08-10. |
13 | 川上义贵,曾我部康平,梅田铁.氧化铝和使用其的汽车催化剂的制造方法:中国,109476493A[P].2021-06-11. |
14 | 苏少龙,李晓云,杨文建,等.一种球形氧化铝的制备方法:中国,109179465B[P].2021-02-23. |
15 | NASU T, ASUMA A.Alumina powder for sintering:JP,2020105047A[P].2020-07-09. |
16 | CIGANE U, PALEVICIUS A, JANUSAS G.Vibration-assisted synthesis of nanoporous anodic aluminum oxide(AAO) membranes[J].Micromachines,2022,13(12):2236. |
17 | VEIGA L P DA, JEANGUENAT C, LISCO F,et al.Ultrathin ALD aluminum oxide thin films suppress the thermal shrinkage of battery separator membranes[J].ACS Omega,2022,7(49):45582-45589. |
18 | 尾崎裕谦,安东博幸.氧化铝和含有其的浆料、和氧化铝多孔膜、层叠隔板、非水电解液二次电池及其制造方法:中国,109119576B[P].2020-01-03. |
19 | HARMENING T, SCHONEBORN M, JAGER A K.Alumina bismuth catalyst support and method for its production field of the invention:EP,3827897A1[P].2021-06-02. |
20 | 吴永峰.勃姆石高温煅烧相变及溶出活性研究[J].世界有色金属,2020(4):9-10. |
WU Yongfeng.Study on the phase transition and digestion performance of boehmite at high temperature[J].World Nonferrous Metals,2020(4):9-10. | |
21 | YANG Yongyu, TIAN Peng, GAO Tingting,et al.Synthesis of controlled-particle-size boehmite for coating lithium-ion battery separators[J].New Journal of Chemistry,2023,47(5):2211-2220. |
22 | 杨永钰,田朋,周若辉,等.氢氧化铝活化对水热法制备勃姆石的影响[J].无机盐工业,2022,54(9):55-62. |
YANG Yongyu, TIAN Peng, ZHOU Ruohui,et al.Effect of gibbsite activation on preparation of boehmite by hydrothermal method[J].Inorganic Chemicals Industry,2022,54(9):55-62. | |
23 | POPESCU C.Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method[J].Thermochimica Acta,1996, 285(2):309-323. |
24 | ZHANG Jianjun, REN Ning.A new kinetic method of processing TA data[J].Chinese Journal of Chemistry,2004,22(12):1459-1462. |
25 | 杨仲禹.一种材料热分析动力学参数的获取方法:中国,113008931A[P].2021-06-22. |
26 | NAQVI S R, TARIQ R, HAMEED Z,et al.Pyrolysis of high-ash sewage sludge:Thermo-kinetic study using TGA and artificial neural networks[J].Fuel,2018,233:529-538. |
27 | 任宁,张秀芳,白继海,等.Popescu法研究一水合乙酸铜的热分解动力学[J].河北师范大学学报,2005,29(6):584-587. |
REN Ning, ZHANG Xiufang, BAI Jihai,et al.Study on thermal decomposition kinetics of copper acetate dihydrate with popescu method[J].Journal of Hebei Normal University(Natural Science),2005,29(6):584-587. | |
28 | XU Bingan, SMITH P.Dehydration kinetics of boehmite in the temperature range 723-873 K[J].Thermochimica Acta,2012,531:46-53. |
29 | 彭志宏,李琼芳,周秋生.氢氧化铝脱水过程的动力学研究[J].轻金属,2010(5):16-18. |
PENG Zhihong, LI Qiongfang, ZHOU Qiusheng.Studies on dehydration kinetics of aluminium hydroxide[J].Light Metals,2010(5):16-18. | |
30 | KAZANTSEV S O, BAKINA O V, PERVIKOV A V,et al.Antimicrobial activity and sorption behavior of Al2O3/Ag nanocomposites produced with the water oxidation of bimetallic Al/Ag nanoparticles[J].Nanomaterials,2022,12(21):3888. |
31 | ABDOU N Y, SABRY M, EL-FARAMAWY N.Thermoluminescence characteristics of different phase transitions from nanocrystalline alumina[J].Journal of Radioanalytical and Nuclear Chemistry,2022,331(9):3865-3876. |
32 | NAMPI P P, GHOSH S, WARRIER K G.Calcination and associated structural modifications in boehmite and their influence on high temperature densification of alumina[J].Ceramics International,2011,37(8):3329-3334. |
33 | 高振昕,贺中央,郑小平,等.拜尔法三水铝石受热相变的形貌特征[J].硅酸盐学报,2008,36(S1):117-123. |
GAO Zhenxin, HE Zhongyang, ZHENG Xiaoping,et al.Phase transformation and morphology of bayer-gibbsite during heating[J].Journal of the Chinese Ceramic Society,2008,36(S1):117-123. | |
34 | 张智慧,李楠,阮国智. γ-Al2O3和α-Al2O3与其对应的氢氧化物对合成尖晶石的影响[J].耐火材料,2007,41(1):33- 36. |
ZHANG Zhihui, LI Nan, RUAN Guozhi.Influence of γ-Al2O3 and α-Al2O3 and their corresponding hydroxides on synthesis of spinel[J].Refractories,2007,41(1):33-36. | |
35 | WANG Haipeng, XU Bingan, SMITH P,et al.Kinetic modelling of gibbsite dehydration/amorphization in the temperature range 823-923 K[J].Journal of Physics and Chemistry of Solids,2006,67(12):2567-2582. |
36 | 范伟东,李旺兴,韩东战,等.粒度对氢氧化铝低温相变动力学的影响[J].化工进展,2020,39(3):1101-1107. |
FAN Weidong, LI Wangxing, HAN Dongzhan,et al.Influence of particle size on kinetics of low temperature phase transformation of aluminum hydroxide[J].Chemical Industry and Engineering Progress,2020,39(3):1101-1107. | |
37 | OKADA K, NAGASHIMA T, KAMESHIMA Y,et al.Effect of crystallite size of boehmite on sinterability of alumina ceramics[J].Ceramics International,2003,29(5):533-537. |
38 | OKADA K, NAGASHIMA T, KAMESHIMA Y,et al.Effect of crystallite size on the thermal phase change and porous properties of boehmite[J].Journal of Colloid and Interface Science,2002,248(1):111-115. |
39 | 黎少华,袁方利,胡鹏,等.薄水铝石粒度对煅烧形成α-Al2O3粉体的影响[J].过程工程学报,2006,6(4):580-584. |
LI Shaohua, YUAN Fangli, HU Peng,et al.Influence of boehmite particle size on the formation of α-alumina powder by calcination[J].The Chinese Journal of Process Engineering,2006,6(4):580-584. | |
40 | 关昕,王晶,史忠祥.水热法制备薄水铝石粉体及其脱水动力学分析[J].大连交通大学学报,2018,39(4):77-82. |
GUAN Xin, WANG Jing, SHI Zhongxiang.Preparation and kinetics of dehydration of boehmite by hydrothermal treatment[J].Journal of Dalian Jiaotong University,2018,39(4):77-82. | |
41 | 回佳琦.Al(OH)3制备Al2O3过程中动力学模拟及低温煅烧工艺研究[D].西宁:青海大学,2019. |
HUI Jiaqi.Kinetic calculation and low-temperature calcination process of Al(OH)3 prepared Al2O3 [D].Xining:Qinghai University,2019. |
[1] | 向梦琪, 孟华, 王烨, 孟宪章, 白宇航, 王余军垚, 张译丹. 钛石膏中铁浸出动力学及其酸浸循环工艺研究[J]. 无机盐工业, 2024, 56(1): 114-120. |
[2] | 王梦迪, 罗瑾, 吴巍, 周靖辉, 王静, 孙彦民, 于海斌. 微反应法制备γ-Al2O3及其对甲基橙的吸附性能研究[J]. 无机盐工业, 2023, 55(9): 66-74. |
[3] | 周世奇, 王涛, 敬方梨, 罗仕忠. 硝酸镁改性碳分子筛分离氮气/甲烷的性能研究[J]. 无机盐工业, 2023, 55(9): 75-80. |
[4] | 范方方, 仝仲凯, 左卫元. 钙改性花生壳生物炭对废水中四环素的吸附研究[J]. 无机盐工业, 2023, 55(6): 109-115. |
[5] | 米晓彤, 李孝国, 常洋, 张永坤, 李永恒, 曹辉, 侯章贵. 晶种和模板剂协同构建纳米ZSM-5团聚体[J]. 无机盐工业, 2023, 55(6): 130-135. |
[6] | 庞飞, 许颖睿, 柴春玲, 申敬敬, 白立光, 赵晓东. 蒽醌法过氧化氢生产工艺中废弃活性氧化铝的回收利用研究概况[J]. 无机盐工业, 2023, 55(6): 1-7. |
[7] | 王浩森, 任柄臣, 许德华, 杨秀山, 张志业. 硝酸分解磷钾矿的浸出工艺及动力学[J]. 无机盐工业, 2023, 55(5): 45-51. |
[8] | 丁泓宇, 仲剑初, 王洪志, 张爽. 晶种诱导法水热合成滑石[J]. 无机盐工业, 2023, 55(5): 59-65. |
[9] | 赵红娟, 王久江, 刘宇航, 李宁, 曹庚振, 刘宏海. 异型晶种对NaY分子筛合成的影响[J]. 无机盐工业, 2023, 55(4): 120-124. |
[10] | 周强, 武斌, 陈葵, 纪利俊, 吴艳阳. 磷尾矿热分解动力学机理与煅烧工艺研究[J]. 无机盐工业, 2023, 55(3): 47-54. |
[11] | 田晓利, 李志勋, 冯润棠, 张洁, 郑全福, 史旭武, 杜永彬. 西藏卡玛多微晶菱镁矿热分解行为研究[J]. 无机盐工业, 2023, 55(3): 60-65. |
[12] | 徐敬尧,周小丽,孙敬会,曹阿林,卿培林. 基于复合熔盐低温制备片状α-氧化铝的研究[J]. 无机盐工业, 2023, 55(2): 73-78. |
[13] | 张星,徐杰,王子兵,侯澎,贺龙,刘欢. 原料粒径对石灰石热分解反应动力学影响[J]. 无机盐工业, 2023, 55(2): 79-84. |
[14] | 田朋, 徐金钢, 徐前进, 刘坤吉, 庞洪昌, 宁桂玲. 纳米氧化铝浆料制备及用于改性锂电池正极材料[J]. 无机盐工业, 2023, 55(12): 43-49. |
[15] | 滕家阳, 冯庆革, 张璇, 覃方红, 冯靖航, 胡嘉文, 陈超宏. 铝灰资源化制备拟薄水铝石的研究[J]. 无机盐工业, 2023, 55(11): 130-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|