无机盐工业 ›› 2021, Vol. 53 ›› Issue (12): 21-28.doi: 10.19964/j.issn.1006-4990.2021-0614
收稿日期:
2021-10-18
出版日期:
2021-12-10
发布日期:
2021-12-16
作者简介:
李佳慧(1997— ),女,硕士研究生,主要研究方向为光催化二氧化碳还原;E-mail: 基金资助:
LI Jiahui1(),LI Keyan1(
),SONG Chunshan1,2,GUO Xinwen1(
)
Received:
2021-10-18
Published:
2021-12-10
Online:
2021-12-16
摘要:
由过量二氧化碳(CO2)排放导致的温室效应使得全球气候变暖问题日益紧迫,在“双碳”背景下,如何资源化利用CO2尤为重要。光催化还原CO2生成化学品和燃料是有望同时解决能源危机和环境问题的途径。非金属半导体聚合氮化碳(PCN)具有可见光响应、化学稳定性高、易于制备等优点,在光催化领域备受关注,但由传统热聚合方法得到的PCN存在比表面积小、电子-空穴对复合严重、对可见光吸收范围窄等不足之处。介绍了光还原CO2的反应机理和PCN的结构,总结了PCN的制备方法以及提升其光还原CO2性能的手段,包括形貌调控、异原子掺杂、缺陷工程和构建异质结等。最后,对目前PCN材料在CO2光还原反应研究中存在的问题进行了分析,并对未来发展方向进行了展望。
中图分类号:
李佳慧,李克艳,宋春山,郭新闻. 聚合氮化碳的制备、改性及光催化还原二氧化碳性能研究[J]. 无机盐工业, 2021, 53(12): 21-28.
LI Jiahui,LI Keyan,SONG Chunshan,GUO Xinwen. Study on preparation,modification and carbon dioxide photocatalytic reduction performance of polymeric carbon nitride[J]. Inorganic Chemicals Industry, 2021, 53(12): 21-28.
表1
CO2还原反应的标准电势[6]
还原半反应 | 标准电势/V(相对于 标准氢电极,pH=0) |
---|---|
CO2(g)+e-→CO2- | -1.90 |
CO2(g)+2H++2e-→HCO2H(l) | -0.20 |
CO2(g)+2H++2e-→CO(g)+H2O(l) | -0.12 |
2H++2e-→H2(g) | 0.00 |
CO2(g)+6H++6e-→CH3OH(l)+H2O(l) | 0.03 |
CO2(g)+4H++4e-→HCHO(l)+H2O(l) | 0.07 |
2CO2(g)+9H2O(l)+12e-→C2H5OH(l)+12OH- | 0.08 |
3CO2(g)+13H2O(l)+18e-→C3H7OH(l)+18OH- | 0.09 |
CO2(g)+8H++8e-→CH4(g)+2H2O(l) | 0.17 |
[1] | SONG C F, LIU Q L, QI Y, et al. Absorption-microalgae hybrid CO2 capture and biotransformation strategy-A review[J]. International Journal of Greenhouse Gas Control, 2019, 88:109-117. |
[2] | ZARGARI N, JUNG E, LEE J H, et al. Carbon dioxide hydrogena-tion:Efficient catalysis by an NHC-amidate Pd(Ⅱ) complex[J]. Tetrahedron Letters, 2017, 58:3330-3332. |
[3] | RASUL S, ANJUM D, JEDIDI A, et al. A highly selective copper-in-dium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO[J]. Angewandte Chemie:International Edition, 2015, 54:2146-2150. |
[4] | ZHAI Q G, XIE S J, FAN W Q, et al. Photocatalytic conversion of carbon dioxide with water into methane:Platinum and copper(Ⅰ) oxi-de co-catalysts with a core-shell structure[J]. Angewandte Chemie:International Edition, 2013, 52:5776-5779. |
[5] | DU C, WANG X J, CHEN W, et al. CO2 transformation to multicar-bon products by photocatalysis and electrocatalysis[J]. Materials To-day Advances, 2020, 6.Doi: 10.1016/j.mtadv.2020.100071. |
[6] | PENG W X, NGUYEN T, NGUYEN D, et al. A roadmap towards the development of superior photocatalysts for solar-driven CO2-to-fu-els production[J]. Renewable & Sustainable Energy Reviews, 2021, 148.Doi: 10.1016/j.rser.2021.111298. |
[7] | KARAMIAN E, SHARIFNIA S. On the general mechanism of pho-tocatalytic reduction of CO2[J]. Journal of CO2 Utilization, 2016, 16:194-203. |
[8] | WANG R R, YANG P J, WANG S B, et al. Regulating morphological and electronic structures of polymeric carbon nitrides by successive copolymerization and stream reforming for photocatalytic CO2 reduction[J]. Catalysis Science & Technology, 2021, 11:2570-2576. |
[9] | BIE C B, ZHU B C, XU F Y, et al. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photoca-talytic CO2 reduction[J]. Advanced Materials, 2019, 31.Doi: 10.1002/adma.201902868. |
[10] | LU L, WANG S M, ZHOU C G, et al. Surface chemistry imposes selective reduction of CO2 to CO over Ta3N5/LaTiO2N photocataly-st[J]. Journal of Materials Chemistry A, 2018, 6:14838-14846. |
[11] | XU J X, JI Q J, YAN X M, et al. Ni(acac)2/Mo-MOF-derived difu-nctional MoNi@MoO2 cocatalyst to enhance the photocatalytic H2 evolution activity of g-C3N4[J]. Applied Catalysis B:Environmen-tal, 2020, 268.Doi: 10.1016/j.apcatb.2020.118739. |
[12] | LI M L, ZHANG L X, FAN X Q, et al. Highly selective CO2 photo-reduction to CO over g-C3N4/Bi2WO6 composites under visible light[J]. Journal of Materials Chemistry A, 2015, 3:5189-5196. |
[13] | LI X, JIANG H P, MA C C, et al. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO[J]. Applied Catalysis B:Environmental, 2021, 283.Doi: 10.1016/j.apcatb.2020.119638. |
[14] | JI Y F, LUO Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface:The essential role of oxygen va-cancy[J]. Journal of the American Chemical Society, 2016, 138:15896-15902. |
[15] | FU J W, JIANG K X, QIU X Q, et al. Product selectivity of photoca-talytic CO2 reduction reactions[J]. Materials Today, 2020, 32:222-243. |
[16] | JEONG S, KIM W D, LEE S, et al. Bi2O3 as a promoter for Cu/TiO2 photocatalysts for the selective conversion of carbon dioxide into methane[J]. ChemCatChem, 2016, 8:1641-1645. |
[17] | TERRANOVA U, VINES F, de LEEUW N H, et al. Mechanisms of carbon dioxide reduction on strontium titanate perovskites[J]. Journal of Materials Chemistry A, 2020, 8:9392-9398. |
[18] | YU L, BA X, QIU M, et al. Visible-light driven CO2 reduction co-upled with water oxidation on Cl-doped Cu2O nanorods[J]. Nano Energy, 2019, 60:576-582. |
[19] | PANG H, MENG X G, LI P, et al. Cation vacancy-initiated CO2 photoreduction over ZnS for efficient formate production[J]. ACS Energy Letters, 2019, 4:1387-1393. |
[20] | WANG Y L, TIAN Y, YAN L K, et al. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction[J]. The Journal of Physical Chemistry C, 2018, 122:7712-7719. |
[21] | PARK H, OU H H, COLUSSI A J, et al. Artificial photosynjournal of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum- dots[J]. The Journal of Physical Chemistry A, 2015, 119:4658-4666. |
[22] | ARORA A K, JASWAL V S, SINGH K, et al. Applications of metal/mixed metal oxides as photocatalyst:A review[J]. Oriental Journal of Chemistry, 2016, 32:2035-2042. |
[23] | CUI Y J, DING Z X, FU X Z, et al. Construction of conjugated car-bon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis[J]. Angewandte Chemie:International Edi-tion, 2012, 51:11814-11818. |
[24] | RONO N, KIBET J K, MARTINCIGH B S, et al. A review of the current status of graphitic carbon nitride[J]. Critical Reviews in Solid State and Materials Sciences, 2021, 46:189-217. |
[25] | FINA F, CALLEAR S K, CARINS G M, et al. Structural investiga-tion of graphitic carbon nitride via XRD and neutron diffraction[J]. Chemistry of Materials, 2015, 27:2612-2618. |
[26] | KESSLER F K, ZHENG Y, SCHWARZ D, et al. Functional carbon nitride materials-design strategies for electrochemical devices[J]. Nature Reviews Materials, 2017, 2.Doi: 10.1038/natrevma-ts.2017.30. |
[27] | LIN L, YU Z, WANG X C. Crystalline carbon nitride semiconduc-tors for photocatalytic water splitting[J]. Angewandte Chemie:In-ternational Edition, 2019, 58:6164-6175. |
[28] | WANG Y H, LIU L Z, MA T Y, et al. 2D graphitic carbon nitride for energy conversion and storage[J]. Advanced Functional Materials, 2021, 31.Doi: 10.1002/adfm.202102540. |
[29] | 张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用[J]. 物理化学学报, 2013, 29(9):1865-1876. |
[30] | YE S, WANG R, WU M Z, et al. A review on g-C3N4 for photocata-lytic water splitting and CO2 reduction[J]. Applied Surface Science, 2015, 358:15-27. |
[31] | Ong W J, TAN L L, YUN H N, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynjournal and envi-ronmental remediation:Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116:7159-7329. |
[32] | SUDHAIK A, RAIZADA P, SHANDILYA P, et al. Review on fab-rication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants[J]. Jour-nal of Industrial and Engineering Chemistry, 2018, 67:28-51. |
[33] | 罗磊. 形貌可控g-C3N4的制备及其可见光催化性能研究[D]. 大连:大连理工大学, 2006. |
[34] | WANG Y X, WANG H, CHEN F Y, et al. Facile synjournal of oxygen doped carbon nitride hollow microsphere for photocatalysis[J]. Applied Catalysis B:Environmental, 2017, 206:417-425. |
[35] | XIA P F, ANTONIETTI M, ZHU B C, et al. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase[J]. Advanced Functional Materials, 2019, 29.Doi: 10.1002/adfm.201900093. |
[36] | 郑云, 王心晨. 超分子自组装法制备氮化碳聚合物光催化剂[J]. 中国材料进展, 2017, 36(1):25-32,39. |
[37] | GU Q, LIAO Y S, YIN L S, et al. Template-free synjournal of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability[J]. Applied Catalysis B:Environmental, 2015, 165:503-510. |
[38] | YU W W, ZHANG T, ZHAO Z K. Garland-like intercalated carbon nitride prepared by an oxalic acid-mediated assembly strategy for highly-efficient visible-light-driven photoredox catalysis[J]. App-lied Catalysis B:Environmental, 2020, 278.Doi: 10.1016/j.apcatb.2020.119342. |
[39] | BAI X J, LI J, CAO C B. Synjournal of hollow carbon nitride micro-spheres by an electrodeposition method[J]. Applied Surface Sci-ence, 2010, 256:2327-2331. |
[40] | ZHANG X L, ZHENG C, GUO S S, et al. Turn-on fluorescence sen-sor for intracellular imaging of glutathione using g-C3N4 nano-sheet-MnO2 sandwich nanocomposite[J]. Analytical Chemistry, 2014, 86:3426-3434. |
[41] | LIN B, YANG G D, WANG L Z. Stacking-layer-number depen-dence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution[J]. Angewandte Chemie:International Edition, 2019, 58:4587-4591. |
[42] | PAN J Q, DONG Z J, JIANG Z Y, et al. MoS2 quantum dots modi-fied black Ti3+-TiO2/g-C3N4 hollow nanosphere heterojunction to-ward photocatalytic hydrogen production enhancement[J]. Solar RRL, 2019, 3.Doi: 10.1002/solr.201970123. |
[43] | ZHANG M Y, SUN Y, CHANG X, et al. Template-free synjournal of one-dimensional g-C3N4 chain nanostructures for efficient photo-catalytic hydrogen evolution[J]. Frontiers in Chemistry, 2021, 9. Doi: 10.3389/fchem.2021.652762. |
[44] | KUMAR S, SURENDAR T, KUMAR B, et al. Synjournal of highly efficient and recyclable visible-light responsive mesoporous g-C3N4 photocatalyst via facile template-free sonochemical route[J]. RSC Advances, 2014, 4:8132-8137. |
[45] | FU J W, ZHU B C, JIANG C J, et al. Hierarchical porous O-dopedg-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Small, 2017, 13.Doi: 10.1002/smll.201603938. |
[46] | TANG J Y, KONG X Y, NG B J, et al. Midgap-state-mediated two-step photoexcitation in nitrogen defect-modified g-C3N4 atomic layers for superior photocatalytic CO2 reduction[J]. Catalysis Sci-ence & Technology, 2019, 9:2335-2343. |
[47] | STARUKH H, PRAUS P. Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis[J]. Cat-alysts, 2020, 10.Doi: 10.3390/catal10101119. |
[48] | WANG K, LI Q, LIU B S, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance[J]. Applied Catalysis B:Environmental, 2015, 176-177:44-52. |
[49] | LI K Y, LIANG Y, YANG H, et al. New insight into the mechanism of enhanced photo-fenton reaction efficiency for Fe-doped semi-conductors:A case study of Fe/g-C3N4[J]. Catalysis Today, 2021, 371:58-63. |
[50] | JI S Y, YANG Y L, ZHOU Z W, et al. Photocatalysis-fenton of Fe-doped g-C3N4 catalyst and its excellent degradation performance towards RhB[J]. Journal of Water Process Engineering, 2021, 40.Doi: 10.1016/j.jwpe.2020.101804. |
[51] | GAO J K, WANG J P, QIAN X F, et al. One-pot synjournal of copper-doped graphitic carbon nitride nanosheet by heating Cu-melamine supramolecular network and its enhanced visible-light-driven pho-tocatalysis[J]. Journal of Solid State Chemistry, 2015, 228:60-64. |
[52] | DOU H L, CHEN L, ZHENG S H, et al. Band structure engineering of graphitic carbon nitride via Cu2+/Cu+ doping for enhanced visible light photoactivity[J]. Materials Chemistry and Physics, 2018, 214:482-488. |
[53] | LIU B Y, NIE X Q, TANG Y, et al. Objective findings on the K-do-ped g-C3N4 photocatalysts:The presence and influence of organic byproducts on K-doped g-C3N4 photocatalysis[J]. Langmuir, 2021, 37:4859-4868. |
[54] | ZHANG M, BAI X J, LIU D, et al. Enhanced catalytic activity of po-tassium-doped graphitic carbon nitride induced by lower valence position[J]. Applied Catalysis B:Environmental, 2015, 164:77-81. |
[55] | WANG Z T, XU J L, ZHOU H, et al. Facile synjournal of Zn(Ⅱ)-do-ped g-C3N4 and their enhanced photocatalytic activity under visible light irradiation[J]. Rare Metals, 2019, 38:459-467. |
[56] | LI N X, LI Y, JIANG R M, et al. Photocatalytic coupling of methane and CO2 into C2-hydrocarbons over Zn doped g-C3N4 catalysts[J]. Applied Surface Science, 2019, 498.Doi: 10.1016/j.apsusc.2019.143861. |
[57] | 章富. 石墨相氮化碳的改性及其光催化制氢性能的研究[D]. 合肥:中国科学技术大学, 2021. |
[58] | TANG J Y, ZHOU W G, GUO R T, et al. Enhancement of photoca-talytic performance in CO2 reduction over Mg/g-C3N4 catalysts un-der visible light irradiation[J]. Catalysis Communications, 2018, 107:92-95. |
[59] | WANG X N, WU L, WANG Z W, et al. C/N vacancy co-enhanced visible-light-driven hydrogen evolution of g-C3N4 nanosheets through controlled He+ ion irradiation[J]. Solar RRL, 2019, 3. Doi: 10.1002/solr.201800298. |
[60] | WU H Z, LIU L M, ZHAO S J. The role of the defect on the adsorp-tion and dissociation of water on graphitic carbon nitride[J]. App-lied Surface Science, 2015, 358:363-369. |
[61] | SHI H N, LONG S, HOU J G, et al. Defects promote ultrafast charge separation in graphitic carbon nitride for enhanced visiblelight-driven CO2 reduction activity[J]. Chemistry:A European Journal, 2019, 25:5028-5035. |
[62] | SONG X H, ZHANG X Y, LI X, et al. Enhanced light utilization efficiency and fast charge transfer for excellent CO2 photoreduc-tion activity by constructing defect structures in carbon nitride[J]. Journal of Colloid and Interface Science, 2020, 578:574-583. |
[63] | FAN Y Y, CHEN H M, CUI D F, et al. NiCo2O4/g-C3N4 heterojunc-tion photocatalyst for efficient H2 generation[J]. Energy Technolo-gy, 2021, 9.Doi: 10.1002/ente.202000973. |
[64] | ZHAO S C, LI K Y, DU J, et al. Facile construction of a hollow In2S3/polymeric carbon nitride heterojunction for efficient visible-light-driven CO2 reduction[J]. ACS Sustainable Chemistry & En-gineering, 2021, 9:5942-5951. |
[65] | JIANG Z F, WAN W M, LI H M, et al. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction[J]. Advanced Materials, 2018, 30.Doi: 10.1002/adma.201706108. |
[66] | SHI H N, DU J, HOU J G, et al. Solar-driven CO2 conversion over Co2+ doped 0D/2D TiO2/g-C3N4 heterostructure:Insights into the role of Co2+ and cocatalyst[J]. Journal of CO2 Utilization, 2020, 38:16-23. |
[1] | 史王芳, 张永胜. 混凝土基非金属硼掺杂富氮氮化碳降解NO x 性能研究[J]. 无机盐工业, 2025, 57(3): 116-123. |
[2] | 李子罕, 张佳琦, 李世卓, 李欣雨, 刘少卓, 王一豪, 郝玉翠, 刘剑, 李彦华. CdS/g-C3N4复合光催化剂的合成及催化机理研究[J]. 无机盐工业, 2025, 57(3): 124-132. |
[3] | 孙庆昊, 李克艳, 郭新闻. Pd/ZnIn2S4纳米片光催化苯甲醇氧化耦合产氢的研究[J]. 无机盐工业, 2025, 57(1): 113-119. |
[4] | 刘光明. C3N5/NH2-MIL-125(Ti)改性混凝土砂浆光催化和力学性能研究[J]. 无机盐工业, 2025, 57(1): 120-128. |
[5] | 张飞刚, 刘中利. CuO/g-C3N4复合材料在有机染料降解和超级电容器中的应用研究[J]. 无机盐工业, 2025, 57(1): 129-136. |
[6] | 张岩岩, 李东红, 刘永鹤, 张阳, 康乐, 王毅. 填料氧化铝的表面处理研究[J]. 无机盐工业, 2025, 57(1): 77-82. |
[7] | 田朋, 张浩然, 徐金钢, 牟晨曦, 徐前进, 宁桂玲. 氧化铝溶胶改性锂离子电池正负极材料的研究[J]. 无机盐工业, 2024, 56(9): 44-53. |
[8] | 石萌轲, 范赵亚, 岳峰, 张硕, 孟阳, 张宏忠. 空气中CO2电辅助式光催化高选择性转化的研究[J]. 无机盐工业, 2024, 56(9): 154-163. |
[9] | 孙延龙, 袁广胜, 王红军. 基于钯修饰的介孔TiO2纳米棒高效光降解四环素的研究[J]. 无机盐工业, 2024, 56(9): 147-153. |
[10] | 李雪连, 唐梓涵, 许杰, 李雄. 硫酸钙晶须/SBS复合改性沥青性能研究[J]. 无机盐工业, 2024, 56(9): 82-89. |
[11] | 张国强, 戎西林, 肖振芳, 薛自然, 程昊, 冯军, 刘泉, 陆瑶, 黄文艺. 甘蔗渣碳气凝胶负载纳米氧化锌的制备及其光催化性能研究[J]. 无机盐工业, 2024, 56(8): 131-138. |
[12] | 王雅雯, 王芳芳, 耿司宇, 鞠佳, 陈雷, 陈常东. SrTiO3-SrWO4的制备及其光催化性能研究[J]. 无机盐工业, 2024, 56(7): 143-149. |
[13] | 宋国良, 穆展鹏, 杨霞霞, 李子涵, 朱金剑, 张景成, 杨文汝, 马文琪. 镁改性对Ni-Mo/Al2O3体系催化剂烯烃选择性能的影响[J]. 无机盐工业, 2024, 56(7): 150-156. |
[14] | 刘敏, 黄秀, 张理元. S型异质结光催化剂的研究进展[J]. 无机盐工业, 2024, 56(7): 18-27. |
[15] | 苏宝才, 张勤, 谢元健, 蔡平雄, 潘远凤. 磷酸铁锰锂材料的合成方法及结构改性的研究进展[J]. 无机盐工业, 2024, 56(7): 28-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|