1 |
MURINGA KANDY M, RAJEEV K A, SANKARALINGAM M.Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide[J].Sustainable Ener- gy & Fuels,2021,5(1):12-33.
|
2 |
GONG E,ALI S, HIRAGOND C B,et al.Solar fuels:Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels[J].Energy & Environmental Science,2022,15(3):880-937.
|
3 |
郭天宇,张佳宁,白德豪 等.氮掺杂生物质炭耦合氧化铜材料用于电催化还原CO2 [J/OL].太原理工大学学报,2024:1-10[2024-02-07].http://kns.cnki.net/kcms/detail/14.1220.N.20240202.1714.003.html.
|
|
GUO Tianyu, ZHANG Jianing, BAI Dehaoet al.Nitrogen-doped biomass carbon coupled with copper oxide materials for electrocatalytic reduction of CO2 [J/OL].Journal of Taiyuan University of Technology:2024:1-10[2024-02-07].http://kns.cnki.net/kcms/detail/14.1220.N.20240202.1714.003.html.
|
4 |
赵炎,郝雪薇,时海南,等.铜掺杂TiO2/PCN异质结光催化还原二氧化碳性能研究[J].无机盐工业,2023,55(8):21-27.
|
|
ZHAO Yan, HAO Xuewei, SHI Hainan,et al.Study on photocatalytic CO2 reduction performance of Cu-doped TiO2/PCN heterojunction[J].Inorganic Chemicals Industry,2023,55(8):21-27.
|
5 |
BAI Yujie, ZHAO Jie, FENG Shuaijun,et al.Light-driven thermocatalytic CO2 reduction over surface-passivated β-Mo2C nanowires:Enhanced catalytic stability by light[J].Chemical Communications,2019,55(32):4651-4654.
|
6 |
HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K.Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J].Angewandte Chemie International Edition,2013,52(29):7372-7408.
|
7 |
INDRAKANTI V P, KUBICKI J D, SCHOBERT H H.Photoinduced activation of CO2 on Ti-based heterogeneous catalysts:Current state,chemical physics-based insights and outlook[J].Ener- gy & Environmental Science,2009,2(7):745-758.
|
8 |
ETTEDGUI J, DISKIN-POSNER Y, WEINER L,et al.Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium(I) phenanthroline-polyoxometalate hybrid complex[J].Journal of the American Chemical Society,2011,133(2):188-190.
|
9 |
赵馨,邹伟欣,董林.高分散铈物种催化剂的可控制备及其光催化还原CO2为CH4的促进机制[J/OL].环境化学,2024,43:1-9.[2024-02-07]http://kns.cnki.net/kcms/detail/11.1844.X.20240202.1512.050.html.
|
|
ZHAO Xin, ZOU Weixin, DONG Lin.Highly dispersed Ce species on g-C3N4 for the enhanced selectivity of photocatalytic CO2 reduction to CH4[J/OL].Environmental Chemistry,2024,43:1-9.[2024-02-07]http://kns.cnki.net/kcms/detail/11.1844.X.20240202.1512.050.html.
|
10 |
宋桂贤,吴雄岗.不同形貌的CdS/BiOBr复合物对环己醇中光催化还原CO2活性的影响[J].工业催化,2023,31(11):61-66.
|
|
SONG Guixian, WU Xionggang.Performance of CdS/BiOBr composites with different morphology in photocatalytic reduction of CO2 in cyclohexanol[J].Industrial Catalysis,2023,31(11):61- 66.
|
11 |
郑国宏,张春雷,陈旻澍,等.CoP/g-C3N4复合材料的制备及其光催化还原CO2性能[J].化工环保,2023,43(6):821-828.
|
|
ZHENG Guohong, ZHANG Chunlei, CHEN Minshu,et al.Preparation of CoP/g-C3N4 composite and its activity for photocatalytic reduction of CO2 [J].Environmental Protection of Chemical Industry,2023,43(6):821-828.
|
12 |
方伟,孙志敏,赵雷,等.三维g-C3N4泡沫负载Cu(OH)2纳米片的制备及其光催化还原CO2性能[J].材料工程,2023,51(4):141-150.
|
|
FANG Wei, SUN Zhimin, ZHAO Lei,et al.Preparation of 3D g-C3N4 foam supported Cu(OH)2 nanosheets for photocatalytic CO2 reduction[J].Journal of Materials Engineering,2023,51(4):141-150.
|
13 |
PARK J H, KIM S, BARD A J.Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting[J].Nano Letters,2006,6(1):24-28.
|
14 |
黎文辉,黄建光,陈彩霞.贵金属负载型TiO2光催化法处理含酚工业废水研究[J].化学工程师,2024,38(2):34-37.
|
|
LI Wenhui, HUANG Jianguang, CHEN Caixia.Treatment of phenol containing industrial wastewater by noble metal supported TiO2 photocatalysis[J].Chemical Engineer,2024,38(2):34-37.
|
15 |
石支尧,李扬,徐静文,等.铜铈共掺杂TiO2用于天然气中汞的光催化脱除研究[J].现代化工,2023,43(4):81-86,92.
|
|
SHI Zhiyao, LI Yang, XU Jingwen,et al.Copper-cerium Co-do-ped TiO2 for photocatalytic removal of mercury from natural gas[J].Modern Chemical Industry,2023,43(4):81-86,92.
|
16 |
AMORÓS-PÉREZ A, CANO-CASANOVA L,LILLO-RÓDENAS
|
|
M Á,et al.Cu/TiO2 photocatalysts for the conversion of acetic acid into biogas and hydrogen[J].Catalysis Today,2017,287:78-84.
|
17 |
柳准,徐启杰,张莉莉,等.TiO2/Cu复合材料的光催化降解和抗菌性能研究及机理分析[J].化工新型材料,2023,51(9):209-212,219.
|
|
LIU Zhun, XU Qijie, ZHANG Lili,et al.Studies on the photocatalytic degradation and antimicrobial properties of TiO2/Cu composite as well as the mechanism[J].New Chemical Materials,2023,51(9):209-212,219.
|
18 |
CHEN Boren, NGUYEN V H, WU J C S,et al.Production of renewable fuels by the photohydrogenation of CO2:Effect of the Cu species loaded onto TiO2 photocatalysts[J].Physical Chemistry Chemical Physics:PCCP,2016,18(6):4942-4951.
|
19 |
夏建强,丁立勤,张海明,等.Cu-TiO2催化剂模拟太阳光光催化降解环丙沙星[J].广东化工,2023,50(13):139-141, 144.
|
|
XIA Jianqiang, DING Liqin, ZHANG Haiming,et al.Photocatalytic degradation of ciprofloxacin by simulating sunlight with Cu-doped TiO2 catalysts[J].Guangdong Chemical Industry,2023,50(13):139-141,144.
|
20 |
蒋毅.聚多巴胺功能修饰及原位化学还原法制备纳米Ag复合材料[D].北京:北京化工大学,2012.
|
|
JIANG Yi.Preparation of nano Ag composites by poly(dopamine) functionalization and in situ chemical reduction[D].Beijing:Beijing University of Chemical Technology,2012.
|
21 |
FRONCISZ W, SARNA T, HYDE J S.Cu2+ probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy.I.Synthetic melanins[J].Archives of Biochemistry and Biophysics,1980,202(1):289-303.
|
22 |
AN Peng, ZUO Fang, LI Xinhua,et al.A bio-inspired polydopamine approach to preparation of gold-coated Fe3O4 core-shell nanoparticles:Synthesis,characterization and mechanism[J].Nano,2013,8(6):1350061.
|
23 |
CONG Ying, XIA Tian, ZOU Miao,et al.Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities[J].Journal of Materials Chemistry B,2014,2(22):3450-3461.
|
24 |
HU A, LIANG R, ZHANG X,et al.Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structur-es[J].Journal of Photochemistry and Photobiology A:Chemistry,2013,256:7-15.
|
25 |
WANG Lan, ZHOU Hanghang, ZHANG Hongzhong,et al.SiO2@TiO2 Core@Shell nanoparticles deposited on 2D-layered ZnIn2S4 to form a ternary heterostructure for simultaneous photocatalytic hydrogen production and organic pollutant degradati- on[J].Inorganic Chemistry,2020,59(4):2278-2287.
|
26 |
PAULINO P N, SALIM V M M, RESENDE N S.Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light[J].Applied Catalysis B:Environmental,2016,185:362-370.
|
27 |
CHEN Changzhou, LIU Peng, XIA Haihong,et al.Photocatalytic cleavage of β-O-4 ether bonds in lignin over Ni/TiO2 [J].Molecules,2020,25(9):2109.
|
28 |
REN Haitao, HAN Jing, LI Tingting,et al.Visible light-induced oxidation of aqueous arsenite using facile Ag2O/TiO2 composites:Performance and mechanism[J].Journal of Photochemistry and Photobiology A:Chemistry,2019,377:260-267.
|
29 |
SALEH R, TAUFIK A, PRAKOSO S P.Fabrication of Ag2O/TiO2 composites on nanographene platelets for the removal of organic pollutants:Influence of oxidants and inorganic anions[J].Applied Surface Science,2019,480:697-708.
|
30 |
ZHAO Jie, LI Yingxuan, ZHU Yunqing,et al.Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation:Role of metallic Cu[J].Applied Catalysis A:General,2016,510:34-41.
|
31 |
ZHANG Minghui, WANG Xiao, QI Xiwei,et al.Effect of Ag cocatalyst on highly selective photocatalytic CO2 reduction to HCOOH over CuO/Ag/UiO-66 Z-scheme heterojunction[J].Jo- urnal of Catalysis,2022,413:31-47.
|
32 |
LIU Fuli, SONG Lizhu, OUYANG Shuxin,et al.Cu-Based mixed metal oxides for an efficient photothermal catalysis of the water-gas shift reaction[J].Catalysis Science & Technology,2019,9(9):2125-2131.
|
33 |
CHEN Lin, LI Hongyi, LI Hongmei,et al.Accelerating photogenerated charge kinetics via the g-C3N4 Schottky junction for enhanced visible-light-driven CO2 reduction[J].Applied Catalysis B:Environmental,2022,318:121863.
|