[1] |
SHEN J, XU X, LIU J, et al. Unraveling the catalytic activity of Febased compounds toward Li2Sx in Li-S chemical system from d-p bands[J]. Advanced Energy Materials, 2021, 11(26).Doi: 10.1002/aenm.202100673.
doi: 10.1002/aenm.202100673
|
[2] |
LI F, LIU Z, SHEN J, et al. A nanorod-like Ni-rich layered cathode with enhanced Li+ diffusion pathways for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(5):2830-2839.
doi: 10.1039/D0TA10608A
|
[3] |
ZHANG N, SUN C, HUANG Y, et al. Tuning electrolyte enables microsized Sn as an advanced anode for Li-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(3):1812-1821.
doi: 10.1039/D0TA10861H
|
[4] |
XU X, SHEN J, LI F, et al. Fe3O4@C nanotubes grown on carbon fabric as a free-standing anode for high-performance Li-ion batteries[J]. Chemistry-A European Journal, 2020, 26(64):14708-14714.
doi: 10.1002/chem.202002938
|
[5] |
JUNG S C, KIM H-J, KANG Y-J, et al. Advantages of Ge anode for Na-ion batteries:Ge vs.Si and Sn[J]. Journal of Alloys and Compounds, 2016, 688:158-163.
doi: 10.1016/j.jallcom.2016.07.201
|
[6] |
HE Y, JIANG L, CHEN T, et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading[J]. Nature Nanotechnology, 2021.Doi: 10.1038/s41565-02100947-8.
doi: 10.1038/s41565-02100947-8
|
[7] |
SENG K H, PARK M H, GUO Z P, et al. Self-assembled germanium/ carbon nanostructures as high-power anode material for the lithiumion battery[J]. Angewandte Chemie International Edition, 2012, 51(23):5657-5661.
doi: 10.1002/anie.201201488
|
[8] |
RAHMAN M M, SULTANA I, YANG T, et al. Lithium germinate (Li2GeO3):A high-performance anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(52):16059-16063.
doi: 10.1002/anie.201609343
|
[9] |
SHIN J H, PARK D H, LEE W J, et al. Coffee waste-derived one-step synjournal of a composite structure with Ge nanoparticles surrounded by amorphous carbon for Li-ion batteries[J]. Journal of Alloys and Compounds, 2022, 889.Doi: 10.1016/j.jallcom.2021.161685.
doi: 10.1016/j.jallcom.2021.161685
|
[10] |
CHAN C K, ZHANG X F, CUI Y. High capacity Li ion battery anodes using Ge nanowires[J]. Nano Letters, 2008, 8(1):307-309.
doi: 10.1021/nl0727157
|
[11] |
CHOCKLA A M, KLAVETTER K C, MULLINS C B, et al. Solutiongrown germanium nanowire anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(9):4658-4664.
|
[12] |
GAVRILIN I M, KUDRYASHOVA Y O, KUZ′MINA A A, et al. High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 888.Doi: 10.1016/j.jelechem.2021.115209.
doi: 10.1016/j.jelechem.2021.115209
|
[13] |
LIU J, SONG K, ZHU C, et al. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries[J]. ACS Nano, 2014, 8(7):7051-7059.
doi: 10.1021/nn501945f
|
[14] |
WANG B, JIN J, WEN Z. In situ synjournal of core-shell structured Ge@NC hybrids as high performance anode material for lithiumion batteries[J]. Chemical Engineering Journal, 2019, 360:1301-1309.
doi: 10.1016/j.cej.2018.09.113
|
[15] |
CHEN Y, MA L, SHEN X, et al. In-situ synjournal of Ge/reduced graphene oxide composites as ultrahigh rate anode for lithium-ion battery[J]. Journal of Alloys and Compounds, 2019, 801:90-98.
doi: 10.1016/j.jallcom.2019.06.074
|
[16] |
WANG X, XU X, LIU J, et al. Facile synjournal of peapod-like Cu3Ge/Ge@C as a high-capacity and long-life anode for Li-ion batteries[J]. Chemistry-A European Journal, 2019, 25(49):11486-11493.
doi: 10.1002/chem.201901629
|
[17] |
MAO E, FU L, LIU W, et al. Encapsulating hetero-Cu3Ge/Ge into nitrogen-doped carbon matrix for advanced lithium storage[J]. Journal of Alloys and Compounds, 2021, 850.Doi: 10.1016/j.jallcom.2020.156815.
doi: 10.1016/j.jallcom.2020.156815
|
[18] |
ZHONG X, HUAN H, LIU X, et al. Facile synjournal of porous germanium-iron bimetal oxide nanowires as anode materials for lithium-ion batteries[J]. Nano Research, 2018, 11(7):3702-3709.
doi: 10.1007/s12274-017-1938-z
|
[19] |
GAO Q, CHEN P, ZHANG Y, et al. Synjournal and characterization of organic-inorganic hybrid GeOx/ethylenediamine nanowires[J]. Advanced Materials, 2008, 20(10):1837-1842.
doi: 10.1002/adma.200701646
|
[20] |
YU L, ZOU R, ZHANG Z, et al. A Zn2GeO4-ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water[J]. Chemical Communications, 2011, 47(38):10719-10721.
doi: 10.1039/c1cc14159g
|
[21] |
WEI D, ZENG S, LI H, et al. Multiphase Ge-based Ge/FeGe/FeGe2/C composite anode for high performance lithium ion batteries[J]. Electrochimica Acta, 2017, 253:522-529.
doi: 10.1016/j.electacta.2017.09.105
|
[22] |
ZHANG C, LIN Z, YANG Z, et al. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage[J]. Chemistry of Materials, 2015, 27(6):2189-2194.
doi: 10.1021/acs.chemmater.5b00218
|