无机盐工业 ›› 2023, Vol. 55 ›› Issue (6): 18-26.doi: 10.19964/j.issn.1006-4990.2022-0604
潘晓晓1,2(), 庄树新1,2(
), 孙雨晴1,2, 孙高星1,2, 任艳1,2, 蒋声育1,2
收稿日期:
2022-10-12
出版日期:
2023-06-10
发布日期:
2023-06-14
通讯作者:
庄树新(1980— ),男,副教授,主要研究方向为新能源材料与器件;E-mail:zsxtony@xmut.edu.cn。作者简介:
潘晓晓(1997— ),男,硕士,主要研究方向为锂电池正极材料;E-mail:xiaoxiaopan21@163.com。
基金资助:
PAN Xiaoxiao1,2(), ZHUANG Shuxin1,2(
), SUN Yuqing1,2, SUN Gaoxing1,2, REN Yan1,2, JIANG Shengyu1,2
Received:
2022-10-12
Published:
2023-06-10
Online:
2023-06-14
摘要:
针对改性磷酸铁锂(LiFePO4)材料作为锂离子电池正极材料的近期研究进行了综述。LiFePO4虽然以其稳定性好、安全性好、环境友好而被认为是最具有发展前景的动力锂离子电池正极材料,但固有的电子电导率和锂离子扩散系数低下导致其电化学性能较差。针对提高其电化学性能的改性研究进行综述,分析了元素掺杂、表面碳包覆、颗粒纳米化和材料复合化4种改性策略对LiFePO4电化学性能的影响,讨论了这4种改性策略的优缺点。分析表明,4种改性策略有效改善了锂离子扩散动力学和电子电导率,但是表面碳包覆和颗粒纳米化会降低材料的振实密度,导致能量密度低。最后,指出解决现存问题的研究方向,即开发电池性与电容性共存的改性策略将是一个可行方法。
中图分类号:
潘晓晓, 庄树新, 孙雨晴, 孙高星, 任艳, 蒋声育. 动力型磷酸铁锂正极材料改性的研究进展[J]. 无机盐工业, 2023, 55(6): 18-26.
PAN Xiaoxiao, ZHUANG Shuxin, SUN Yuqing, SUN Gaoxing, REN Yan, JIANG Shengyu. Research progress of modified-LiFePO4 as cathode materials for lithium ion batteries[J]. Inorganic Chemicals Industry, 2023, 55(6): 18-26.
表1
不同改性策略下LiFePO4电化学性能
改性策略 | 正极材料 | 锂离子迁移速率/ (cm2·s-1) | 放电容量/ (mA·h·g-1) | 功率密度a(0.1C)/ (W·kg-1) | 能量密度b(0.1C)/ (W·h·kg-1) |
---|---|---|---|---|---|
元素掺杂[ | Li0.98Nb0.02FePO4/C | 2.47×10-14 | 114.3(10C) | 113.28 | 517.75 |
元素掺杂[ | LFP-1 | 1.11×10-11 | 110.6(10C) | 117.64 | 501.44 |
元素掺杂[ | LFP-VF | 2.94×10-11 | 124.9(10C) | 126.12 | 519.68 |
表面碳包覆[ | LFMP@B/P-C | 1.89×10-10 | 97.1(20C) | 115.36 | 502.18 |
表面碳包覆[ | LFP@1 | 6.40×10-11 | 119.7(10C) | 120.08 | 527.68 |
颗粒纳米化[ | b-LiFePO4/C | 7.35×10-14 | 113(10C) | 106.72 | 527.00 |
颗粒纳米化[ | LFP/C | 8.10×10-11 | 140.8(10C) | 134.1 | 544.00 |
材料复合化[ | 2LFPLVP-S64 | — | 123(10C) | 129.45 | 531.36 |
材料复合化[ | 5LFVP | — | 67(100C) | 102.34 | 413.60 |
1 | PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].Journal of the Electrochemical Society,1997,144(4):1188-1194. |
2 | 王甲泰,赵段,马莲花,等.锂离子电池正极材料磷酸铁锂的研究进展[J].无机盐工业,2020,52(4):18-22. |
WANG Jiatai, ZHAO Duan, MA Lianhua,et al.Research progress of LiFePO4 cathode materials for Li-ion battery[J].Inorganic Chemicals Industry,2020,52(4):18-22. | |
3 | 张婷,林森,于建国.磷酸铁锂正极材料的制备及性能强化研究进展[J].无机盐工业,2021,53(6):31-40. |
ZHANG Ting, LIN Sen, YU Jianguo.Research progress in synthesis and performance enhancement of LiFePO4 cathode materials[J].Inorganic Chemicals Industry,2021,53(6):31-40. | |
4 | LI Haoyu, YE Hua, SUN Mingcang,et al.Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method[J].Journal of Central South University,2020,27(11):3239-3248. |
5 | YAN Zhixiong, HUANG Dequan, FAN Xiaoping,et al.Fluorine-doped carbon coated LiFePO3.938F0.062 composites as cathode materials for high-performance lithium-ion batteries[J].Frontiers in Materials,2020,6:341. |
6 | RISSOULI K, BENKHOUJA K, RAMOS-BARRADO J R,et al.Electrical conductivity in lithium orthophosphates[J].Materials Science and Engineering:B,2003,98(3):185-189. |
7 | PROSINI P P, LISI M, ZANE D,et al.Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J].Solid State Ionics,2002,148(1/2):45-51. |
8 | ZHANG Baofeng, XU Youlong, WANG Jie,et al.Electrochemical performance of LiFePO4/graphene composites at low temperature affected by preparation technology[J].Electrochimica Acta,2021,368:137575. |
9 | LIU Bingqiu, ZHANG Qi, LI Yiqian,et al.Realizing complete solid-solution reaction to achieve temperature independent LiFePO4 for high rate and low temperature Li-ion batteries[J].CCS Chemistry,2022:1-22. |
10 | ZHANG Yin, ALARCO J A, NERKAR J Y,et al.Observation of preferential cation doping on the surface of LiFePO4 particles and its effect on properties[J].ACS Applied Energy Materials,2020,3(9):9158-9167. |
11 | WANG Hongqiang, LAI Anjie, HUANG Dequan,et al.Y-F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithi-um-ion batteries[J].New Journal of Chemistry,2021,45(12):5695-5703. |
12 | LI Lingjun, LI Xinhai, WANG Zhixing,et al.Stable cycle-life properties of Ti-doped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method[J].Journal of Physics and Chemistry of Solids,2009,70(1):238-242. |
13 | HSIEH C T, CHEN I L, CHEN Weiyu,et al.Synthesis of iron phosphate powders by chemical precipitation route for high-power lithium iron phosphate cathodes[J].Electrochimica Acta,2012,83:202-208. |
14 | LIU Yukang, ZHANG Hao, HUANG Zheng,et al.Understanding the influence of nanocarbon conducting modes on the rate performance of LiFePO4 cathodes in lithium-ion batteries[J].Journal of Alloys and Compounds,2022,905:164205. |
15 | XI Yuming, LU Yangcheng.Toward uniform in situ carbon coating on nano-LiFePO4 via a solid-state reaction[J].Industrial & Engineering Chemistry Research,2020,59(30):13549-13555. |
16 | CHEN C, LIU G B, WANG Y,et al.Preparation and electrochemical properties of LiFePO4/C nanocomposite using FePO4·2H2O nanoparticles by introduction of Fe3(PO4)2·8H2O at low cost[J].Electrochimica Acta,2013,113:464-469. |
17 | HUANG Xiaopeng, YAO Yaochun, LIANG Feng,et al.Concentration-controlled morphology of LiFePO4 crystals with an exposed(100) facet and their enhanced performance for use in lithium-ion batteries[J].Journal of Alloys and Compounds,2018,743:763-772. |
18 | ZHANG Jiafeng, SHEN Chao, ZHANG Bao,et al.Synthesis and performances of 2LiFePO4·Li3V2(PO4)3/C cathode materials via spray drying method with double carbon sources[J].Journal of Power Sources,2014,267:227-234. |
19 | MEDVEDEVA A E, PECHEN L S, MAKHONINA E V,et al.Synthesis and electrochemical properties of lithium-ion battery cathode materials based on LiFePO4-LiMn2O4 and LiFePO4-LiNi0.82Co0.18O2 composites[J].Russian Journal of Inorganic Che- mistry,2019,64(7):829-840. |
20 | LIN Hao, WEN Yanwei, ZHANG Chenxi,et al.A GGA+U study of lithium diffusion in vanadium doped LiFePO4 [J].Solid State Communications,2012,152(12):999-1003. |
21 | KULKA A, BRAUN A, HUANG T W,et al.Evidence for Al doping in lithium sublattice of LiFePO4 [J].Solid State Ionics,2015,270:33-38. |
22 | HUANG Wenquan, CHENG Qing, QIN Xue.Effect of Li excess content and Ti dopants on electrochemical properties of LiFePO4 prepared by thermal reduction method[J].Russian Journal of Electrochemistry,2010,46(3):359-362. |
23 | SHU Hongbo, WANG Xianyou, WEN Weicheng,et al.Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping[J].Electrochimica Acta,2013,89:479-487. |
24 | LI Xuetian, SHAO Zhongbao, LIU Kuiren,et al.Enhancement of Nb-doping on the properties of LiFePO4/C prepared via a high-temperature ball milling-based method[J].Journal of Solid State Electrochemistry,2019,23(2):465-473. |
25 | LIU Yan, QIN Wenchao, ZHANG Dengke,et al.Effect of Na+ in situ doping on LiFePO4/C cathode material for lithium-ion batteries[J].Progress in Natural Science:Materials International,2021, 31(1):14-18. |
26 | HU C W, LEE C H, WU P J.Study on the dynamics of a vanadium doped LiFePO4 lithium-ion battery using quasi-elastic neutron scattering technique[J].Journal of the Chinese Chemical Society,2021,68(3):507-511. |
27 | NIE X, XIONG J.Electrochemical properties of Mn-doped nanosphere LiFePO4 [J].JOM,2021,73(8):2525-2530. |
28 | LIU Y, GU Y J, LUO G,et al.Ni-doped LiFePO4/C as high-performance cathode composites for Li-ion batteries[J].Ceramics International,2020,46(10):14857-14863. |
29 | LATIF C, FIRDAUSI A, NIHLATUNNUR N,et al.Synchrotron crystal and local structures,microstructure,and electrical characterization of Cu-doped LiFePO4/C via dissolution method with ironstone as Fe source[J].Journal of Materials Science:Materials in Electronics,2022,33(22):17722-17732. |
30 | SŁAWIŃSKI W A, PLAYFORD H Y, HULL S,et al.Neutron pair distribution function study of FePO4 and LiFePO4 [J].Chemistry of Materials,2019,31(14):5024-5034. |
31 | FREDJ E BEN, ROUSSELOT S, DANIS L,et al.Synthesis and characterization of LiFe1- x Mn x PO4(x=0.25,0.50,0.75) lithium ion battery cathode synthesized via a melting process[J].Journal of Energy Storage,2020,27:101116. |
32 | GONG Shangmin, BAI Xue, LIU Rui,et al.Study on discharge voltage and discharge capacity of LiFe1- x Mn x PO4 with high Mn content[J].Journal of Materials Science:Materials in Electronics,2020,31(10):7742-7752. |
33 | GAO Yuan, XIONG Kun, ZHANG Haidong,et al.Effect of Ru doping on the properties of LiFePO4/C cathode materials for lithi-um-ion batteries[J].ACS Omega,2021,6(22):14122-14129. |
34 | OKADA K, KIMURA I, MACHIDA K.High rate capability by sulfur-doping into LiFePO4 matrix[J].RSC Advances,2018,8(11):5848-5853. |
35 | KUGANATHAN N, CHRONEOS A. Formation,doping,and lithium incorporation in LiFePO4[J].AIP Advances,2022,12(4):045225. |
36 | LI Xuetian, YU Lina, CUI Yonghui,et al.Enhanced properties of LiFePO4/C cathode materials co-doped with V and F ions via high-temperature ball milling route[J].International Journal of Hydrogen Energy,2019,44(50):27204-27213. |
37 | CAO He, WEN Lei, GUO Zhenqiang,et al.Application and prospects for using carbon materials to modify lithium iron phosphate materials used at low temperatures[J].New Carbon Materials,2022,37(1):46-58. |
38 | MENG Fanbo, XIONG Xingyu, TAN Liang,et al.Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries:A review[J].Energy Storage Materials,2022,44:390-407. |
39 | MO Yudi, LIU Junchen, MENG Chao,et al.Stable and ultrafast lithium storage for LiFePO4/C nanocomposites enabled by instantaneously carbonized acetylenic carbon-rich polymer[J].Carbon,2019,147:19-26. |
40 | GONG Chunli, XUE Zhigang, WEN Sheng,et al.Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries[J].Journal of Power Sources,2016,318:93-112. |
41 | JING Maoxiang, ZHAI Hongai, PI Zhichao,et al.High loading LiFePO4 on activated carbon fiber cloth as a high capacity cathode for Li-ion battery[J].Russian Journal of Applied Chemistry,2016,89(7):1183-1188. |
42 | CAO Zhaoxia, SANG Min, CHEN Shengnan,et al.in situ constructed(010)-oriented LiFePO4 nanocrystals/carbon nanofiber hybrid network:Facile synthesis of free-standing cathodes for lithi-um-ion batteries[J].Electrochimica Acta,2020,333:135538. |
43 | SANCHEZ J S, XU J, XIA Zhenyuan,et al.Electrophoretic coating of LiFePO4/Graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries[J].Composites Science and Technology,2021,208:108768. |
44 | LIU Xinyan, PENG Hongjie, ZHANG Qiang,et al.Hierarchical carbon nanotube/carbon black scaffolds as short- and long-range electron pathways with superior Li-ion storage performance[J].ACS Sustainable Chemistry & Engineering,2014,2(2):200-206. |
45 | ZHANG Jianye, HUANG Zhiyong, HE Chengen,et al.Binary carbon-based additives in LiFePO4 cathode with favorable lithium storage[J].Nanotechnology Reviews,2020,9(1):934-944. |
46 | LI Wei, GARG A, LE M L P,et al.Electrochemical performance investigation of LiFePO4/C0.15- x (x=0.05,0.1,0.15 CNTs) electrodes at various calcination temperatures:Experimental and Intelligent Modelling approach[J].Electrochimica Acta,2020,330: 135314. |
47 | KIM W,RYU W, HAN D,et al.Fabrication of graphene embedded LiFePO4 using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries[J].ACS Applied Materials & Interfaces,2014,6(7):4731-4736. |
48 | GUI Xuchun, ZENG Zhiping, ZHU Yuan,et al.Three-dimensional carbon nanotube sponge-array architectures with high energy dissipation[J].Advanced Materials,2014,26(8):1248-1253. |
49 | XU Yuxi, SHENG Kaixuan, LI Chun,et al.Self-assembled graphene hydrogel via a one-step hydrothermal process[J].ACS Nano,2010,4(7):4324-4330. |
50 | WANG Dawei, LI Feng, LIU Min,et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J].Angewandte Chemie International Edition,2009,48(9):1525. |
51 | Kuanyou TUO, MAO Liping, DING Hao,et al.Boron and phosphorus dual-doped carbon coating improves electrochemical performances of LiFe0.8Mn0.2PO4 cathode materials[J].ACS Applied Energy Materials,2021,4(8):8003-8015. |
52 | LI Yin, WANG Li, ZHANG Keyu,et al.High performance of LiFePO4 with nitrogen and phosphorus dual-doped carbon layer for lithium-ion batteries[J].Journal of Alloys and Compounds,2022,890:161617. |
53 | ZHANG Yong, FENG Hui, WU Xingbing,et al.One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4 [J].Electrochimica Acta,2009,54(11):3206-3210. |
54 | AMRI A, HENDRI Y B, SAPUTRA E,et al.Formation kinetics of sol-gel derived LiFePO4 olivine analyzed by reliable non-isothermal approach[J].Ceramics International,2022,48(12):17729-17737. |
55 | LIU Youyong, CAO Chuanbao.Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method[J].Electrochimica Acta,2010, 55(16):4694-4699. |
56 | WANG Xiaoyan, WEN Lizhi, ZHENG Yi,et al.Effect of FeSO4 purity on low temperature performance of LiFePO4/C[J].Ionics,2020,26(9):4433-4442. |
57 | ZHANG Ting, GONG Dongjie, LIN Sen,et al.Effect of pH-de-pendent intermediate on the performance of LiFePO4/C cathode material[J].Chemical Engineering Journal,2022,449:137830. |
58 | LUO Shaohua, HU Dongbei, LIU Huan,et al.Hydrothermal synthesis and characterization of α-Fe2O3/C using acid-pickled iron oxide red for Li-ion batteries[J].Journal of Hazardous Materials,2019,368:714-721. |
59 | KANAGARAJ A B, CHATURVEDI P, KIM H J,et al.Controllable synthesis of LiFePO4 microrods and its superior electrochemical performance[J].Materials Letters,2021,283:128737. |
60 | RUIZ-JORGE F, BENÍTEZ A, FERNÁNDEZ-GARCÍA S,et al.Effect of fast heating and cooling in the hydrothermal synthesis on LiFePO4 microparticles[J].Industrial & Engineering Chemistry Research,2020,59(19):9318-9327. |
61 | ALSAMET M A M M, BURGAZ E.Synthesis and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods[J].Electrochimica Acta,2021, 367:137530. |
62 | MING Xianglan, WANG Ruizi, LI Teng,et al.Preparation of micro-nano-structured FePO4·2H2O for LiFePO4 cathode materials by the turbulent flow cycle method[J].ACS Omega,2021,6(29):18957-18963. |
63 | LIANG Shuquan, CAO Xinxin, WANG Yaping,et al.Uniform 8LiFePO4·Li3V2(PO4)3/C nanoflakes for high-performance Li-ion batteries[J].Nano Energy,2016,22:48-58. |
64 | ZHANG Yue, ZHANG Zihe, TANG Yakun,et al.LiFePO4 particles embedded in fast bifunctional conductor rGO&C@Li3V2(PO4)3 nanosheets as cathodes for high-performance Li-ion hybrid capacitors[J].Advanced Functional Materials,2019,29(17):1807895. |
65 | PI Yuqiang, LUO Gangwei, WANG Peiyao,et al.Material optimization engineering toward xLiFePO4·yLi3V2(PO4)3 composites in application-oriented Li-ion batteries[J].Materials,2022,15(10):3668. |
[1] | 张豹, 权凯栋, 王永锋, 韩非, 史爱文, 刘欣, 王晓敏. 纳米花状Fe y -NiCoS x @NF催化材料制备及电解海水制氢析氧的研究[J]. 无机盐工业, 2025, 57(2): 130-137. |
[2] | 付煜, 张柏爽, 杨健茂, 刘建允. 锰酸锂材料在电化学提锂应用中的研究进展[J]. 无机盐工业, 2024, 56(12): 62-69. |
[3] | 袁帅, 方杨飞, 杨向光, 张一波. 稀土掺杂CeO2的合成及其CMP性能研究[J]. 无机盐工业, 2024, 56(12): 35-41. |
[4] | 赵润泽, 钱阿妞. 退役动力电池锂回收及电池级碳酸锂制备研究进展[J]. 无机盐工业, 2024, 56(12): 70-78. |
[5] | 李萍, 李军, 陈明. 失效锂萃取剂中Fe(Ⅲ)的回收及制备电池级磷酸铁的工艺研究[J]. 无机盐工业, 2024, 56(10): 28-37. |
[6] | 王紫涵, 李军, 陈明, 周青禺. 硝酸铁和磷酸共沉淀法制备电池级磷酸铁工艺研究[J]. 无机盐工业, 2023, 55(7): 51-57. |
[7] | 陈昱珏, 张梁军, 旷焕, 蒋漫文, 肖利. 磷酸铁锂废粉硫酸氢钠焙烧回收工艺研究[J]. 无机盐工业, 2023, 55(3): 113-117. |
[8] | 徐瑞琳, 曾涛, 刘欢, 刘兴伟, 王浩, 徐晓明, 赵李鹏. 磷酸铁锂电池循环初期衰减快原因分析及性能改善[J]. 无机盐工业, 2023, 55(3): 92-97. |
[9] | 屈恋, 李越珠, 李铭雅, 王昭沛, 陈燕玉, 李意能. 磷化铁对磷酸铁锂电化学性能的影响探究[J]. 无机盐工业, 2023, 55(12): 88-94. |
[10] | 徐瑞琳,赵李鹏,刘兴伟,刘欢,王浩,徐晓明,曾涛. 磷酸铁锂高温循环性能的改善[J]. 无机盐工业, 2022, 54(9): 108-112. |
[11] | 龚家竹,周桂民,吴宁兰,王炜林,谯光芹. 无机盐工业面临碳达峰碳中和的挑战与创新发展机遇[J]. 无机盐工业, 2022, 54(4): 46-54. |
[12] | 杨文宇,林志雅,付红,颜文悦,林建平,关贵清. 基于开尔文探针技术的磷酸铁锂表面势研究[J]. 无机盐工业, 2022, 54(11): 65-70. |
[13] | 张婷,林森,于建国. 磷酸铁锂正极材料的制备及性能强化研究进展[J]. 无机盐工业, 2021, 53(6): 31-40. |
[14] | 刘佩文,董鹏,孟奇,杨轩,周思源. 废旧磷酸铁锂电池正极材料固相法再生研究进展[J]. 无机盐工业, 2020, 52(9): 6-8. |
[15] | 郭举,贾双珠. 水热法一步合成磷酸铁锂及其性能研究[J]. 无机盐工业, 2020, 52(6): 36-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|