[1] |
SZULEJKO J E, KUMAR P, DEEP A, et al. Global warming projec- tions to 2100 using simple CO2 greenhouse gas modeling and com- ments on CO2 climate sensitivity factor[J]. Atmospheric Pollution Research, 2017, 8(1):136-140.
|
[2] |
ANDERSON T R, HAWKINS E, JONES P D. CO2,the greenhouse effect and global warming:From the pioneering work of Arrhenius and Callendar to today′s Earth system models[J]. Endeavour, 2016, 40(3):178-187.
|
[3] |
王建行, 赵颖颖, 李佳慧, 等. 二氧化碳的捕集、固定与利用的研究进展[J]. 无机盐工业, 2020, 52(4):12-17.
|
[4] |
BOOT-HANDFORD M E, ABANADES J C, ANTHONY E J, et al. Carbon capture and storage update[J]. Energy & Environmental Sci- ence, 2014, 7(1):130-189.
|
[5] |
KÄTELHÖN A, MEYS R, DEUTZ S, et al. Climate change mitigation potential of carbon capture and utilization in the chemical indust- ry[J]. Proceedings of the National Academy of Sciences, 2019, 116(23):11187-11194.
|
[6] |
BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and stor- age(CCS):The way forward[J]. Energy & Environmental Science, 2018, 11(5):1062-1176.
|
[7] |
HAIDER M B, HUSSAIN Z, KUMAR R. CO2 absorption and kinetic study in ionic liquid amine blends[J]. Journal of Molecular Li- quids, 2016, 224:1025-1031.
|
[8] |
PETERS L, HUSSAIN A, FOLLMANN M, et al. CO2 removal from natural gas by employing amine absorption and membrane technolo- gy-A technical and economical analysis[J]. Chemical Engineering Journal, 2011, 172(2):952-960.
|
[9] |
VEAWAB A, TONTIWACHWUTHIKUL P, CHAKMA A. Corrosion behavior of carbon steel in the CO2 absorption process using aque- ous amine solutions[J]. Industrial & Engineering Chemistry Rese- arch, 1999, 38(10):3917-3924.
|
[10] |
HONG S-M, JANG E, DYSART A D, et al. CO2 capture in the su- stainable wheat-derived activated microporous carbon compart- ments[J]. Scientific Reports, 2016, 6(1):1-10.
|
[11] |
TRICKETT C A, HELAL A, AL-MAYTHALONY B A, et al. The chemistry of metal-organic frameworks for CO2 capture,regenera- tion and conversion[J]. Nature Reviews Materials, 2017, 2(8):1-16.
|
[12] |
柴彤, 赵瑞红, 栗明宏, 等. 氨基改性有序介孔氧化铝吸附二氧化碳性能研究[J]. 无机盐工业, 2016, 48(12):14-18.
|
[13] |
周静, 邹洪涛, 邢焰, 等. 磷石膏制备纳米氧化钙基二氧化碳吸附剂工艺的优化[J]. 无机盐工业, 2016, 48(10):73-76.
|
[14] |
KACEM M, PELLERANO M, DELEBARRE A. Pressure swing adsorption for CO2/N2 and CO2/CH4 separation:Comparison between activated carbons and zeolites performances[J]. Fuel Processing Technology, 2015, 138:271-283.
|
[15] |
GARCÍA S, GIL M V, MARTÍN C F, et al. Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture[J]. Chemical Engineering Journal, 2011, 171(2):549-556.
|
[16] |
BEN-MANSOUR R, HABIB M A, BAMIDELE O E, et al. Carbon capture by physical adsorption:Materials,experimental investiga- tions and numerical modeling and simulations-A review[J]. App- lied Energy, 2016, 161:225-255.
|
[17] |
ALABADI A, RAZZAQUE S, YANG Y, et al. Highly porous activat- ed carbon materials from carbonized biomass with high CO2 captur- ing capacity[J]. Chemical Engineering Journal, 2015, 281:606-612.
|
[18] |
BHATT P M, BELMABKHOUT Y, CADIAU A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption[J]. Journal of the American Chemical Society, 2016, 138(29):9301-9307.
|
[19] |
BELMABKHOUT Y, GUILLERM V, EDDAOUDI M. Low co- ncentration CO2 capture using physical adsorbents:Are metal-or- ganic frameworks becoming the new benchmark materials?[J]. Chemical Engineering Journal, 2016, 296:386-397.
|
[20] |
SAI BHARGAVA REDDY M, PONNAMMA D, SADASIVUNI K K, et al. Carbon dioxide adsorption based on porous materials[J]. RSC Advances, 2021, 11(21):12658-12681.
|
[21] |
AZMI A A, AZIZ M A A. Mesoporous adsorbent for CO2 capture application under mild condition:A review[J]. Journal of Environ- mental Chemical Engineering, 2019, 7(2).Doi: 10.1016/j.jece.2019.103022.
|
[22] |
LIU R S, SHI X D, WANG C T, et al. Advances in post-combus- tion CO2 capture by physical adsorption:From materials innovation to separation practice[J]. ChemSusChem, 2021, 14(6):1428-1471.
|
[23] |
HAO G-P, LI W-C, QIAN D, et al. Structurally designed synjournal of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29):11378-11388.
|
[24] |
LIU Q, HE P, QIAN X, et al. Enhanced CO2 adsorption performance on hierarchical porous ZSM-5 zeolite[J]. Energy & Fuels, 2017, 31(12):13933-13941.
|
[25] |
KONGNOO A, TONTISIRIN S, WORATHANAKUL P, et al. Sur- face characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash[J]. Fuel, 2017, 193:385-394.
|
[26] |
BARTHOMEUF D. Framework induced basicity in zeolites[J]. Mi- croporous and Mesoporous Materials, 2003, 66(1):1-14.
|
[27] |
BARTHOMEUF D. Conjugate acid-base pairs in zeolites[J]. The Journal of Physical Chemistry, 1984, 88(1):42-45.
|
[28] |
WALTON K S, ABNEY M, BDOUGLAS LEVAN M. CO2 ad- sorption in Y and X zeolites modified by alkali metal cation exch- ange[J]. Microporous and Mesoporous Materials, 2006, 91(1):78-84.
|
[29] |
PHAM T D, HUDSON M R, BROWN C M, et al. On the structure- property relationships of cation-exchanged ZK-5 zeolites for CO2 adsorption[J]. ChemSusChem, 2017, 10(5):946-957.
|
[30] |
YANG J, SHANG H, KRISHNA R, et al. Adjusting the proportions of extra-framework K+ and Cs+ cations to construct a“molecular gate” on ZK-5 for CO2 removal[J]. Microporous and Mesoporous Materi- als, 2018, 268:50-57.
|
[31] |
SUN M, GU Q, HANIF A, et al. Transition metal cation-exchanged SSZ-13 zeolites for CO2 capture and separation from N2[J]. Che- mical Engineering Journal, 2019, 370:1450-1458.
|
[32] |
SU F, LU C, KUO S-C, et al. Adsorption of CO2 on amine-functio- nalized Y-type zeolites[J]. Energy & Fuels, 2010, 24(2):1441-1448.
|
[33] |
MURGE P, DINDA S, ROY S. Zeolite-based sorbent for CO2 capture:Preparation and performance evaluation[J]. Langmuir, 2019, 35(46):14751-14760.
|
[34] |
WANG Y, DU T, QIU Z, et al. CO2 adsorption on polyethylenimine- modified ZSM-5 zeolite synthesized from rice husk ash[J]. Materi- als Chemistry and Physics, 2018, 207:105-113.
|
[35] |
CHEN C, KIM S-S, CHO W-S, et al. Polyethylenimine-incorpora- ted zeolite 13X with mesoporosity for post-combustion CO2 cap- ture[J]. Applied Surface Science, 2015, 332:167-171.
|
[36] |
MADDEN D, CURTIN T. Carbon dioxide capture with amino- functionalised zeolite-β:A temperature programmed desorption study under dry and humid conditions[J]. Microporous and Meso- porous Materials, 2016, 228:310-317.
|
[37] |
SANZ R, CALLEJA G, ARENCIBIA A, et al. Amino functionalized mesostructured SBA-15 silica for CO2 capture:Exploring the rela- tion between the adsorption capacity and the distribution of amino groups by TEM[J]. Microporous and Mesoporous Materials, 2012, 158:309-317.
|
[38] |
SON W-J, CHOI J-S, AHN W-S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materi- als[J]. Microporous and Mesoporous Materials, 2008, 113(1):31-40.
|
[39] |
JAHANDAR L M, SAYARI A. CO2 capture using triamine-gra- fted SBA-15:The impact of the support pore structure[J]. Chemi- cal Engineering Journal, 2018, 334:1260-1269.
|
[40] |
SANZ-PÉREZ E S, ARENCIBIA A, CALLEJA G, et al. Tuning the textural properties of HMS mesoporous silica.Functionalization to- wards CO2 adsorption[J]. Microporous and Mesoporous Materials, 2018, 260:235-244.
|
[41] |
SUBAGYONO D J N, LIANG Z, KNOWLES G P, et al. Amine mo- dified mesocellular siliceous foam (MCF) as a sorbent for CO2[J]. Chemical Engineering Research and Design, 2011, 89(9):1647-1657.
|
[42] |
D′ALESSANDRO D M, SMIT BLONG J R. Carbon dioxide capture:Prospects for new materials[J]. Angewandte Chemie In- ternational Edition, 2010, 49(35):6058-6082.
|
[43] |
IRANI M, FAN M, ISMAIL H, et al. Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption[J]. Nano Energy, 2015, 11:235-246.
|
[44] |
CECILIA J A, VILARRASA-GARCíA E, CAVALCANTE C L, et al. Evaluation of two fibrous clay minerals(sepiolite and palygors- kite) for CO2 Capture[J]. Journal of Environmental Chemical En- gineering, 2018, 6(4):4573-4587.
|
[45] |
WANG W, XIAO J, WEI X, et al. Development of a new clay sup- ported polyethylenimine composite for CO2 capture[J]. Applied Energy, 2014, 113:334-341.
|
[46] |
GÓMEZ-POZUELO G, SANZ-PÉREZ E S, ARENCIBIA A, et al. CO2 adsorption on amine-functionalized clays[J]. Microporous and Mesoporous Materials, 2019, 282:38-47.
|
[47] |
VILARRASA-GARCÍA E, CECILIA J A, AZEVEDO D C S, et al. Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture[J]. Microporous and Me- soporous Materials, 2017, 249:25-33.
|
[48] |
WANG J, HEERWIG A, LOHE M R, et al. Fungi-based porous carbons for CO2 adsorption and separation[J]. Journal of Materials Chemistry, 2012, 22(28):13911-13913.
|
[49] |
TIAN W, ZHANG H, SUN H, et al. Heteroatom(N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications[J]. Advanced Functional Materials, 2016, 26(47):8651-8661.
|
[50] |
GUO Y, TAN C, SUN J, et al. Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption[J]. Chemical En- gineering Journal, 2020, 381.Doi: 10.1016/j.cej.2019.122736.
|
[51] |
SEVILLA M, FUERTES A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmen- tal Science, 2011, 4(5):1765-1771.
|
[52] |
WANG H, XU C, ZHOU Y, et al. Fabrication of hierarchical N-do- ped carbon nanotubes for CO2 adsorption[J]. Nano, 2019, 14(6).Doi: 10.1142/S1793292019500723.
|
[53] |
MISHRA A K, RAMAPRABHU S. Carbon dioxide adsorption in graphene sheets[J]. AIP Advances, 2011, 1(3).Doi: 10.1063/1.3638178.
|