[1] |
MANTHIRAM A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-rich layered oxide cathodes:Progress and perspectives[J]. Advanced Energy Materials, 2016, 6(1).Doi: 10.1002/aenm.201501010.
|
[2] |
LARCHER D, TARASCON J M. Towards greener and more sustain-able batteries for electrical energy storage[J]. Nature Chemistry, 2014, 7(1):19-29.
|
[3] |
ANDRE D, KIM S J, LAMP P, et al. Future generations of cathode materials:An automotive industry perspective[J]. Journal of Mate-rials Chemistry A, 2015, 3(13):6709-6732.
|
[4] |
SUN Y K. High-capacity layered cathodes for next-generation elec- tric vehicles[J]. ACS Energy Letters, 2019, 4(5):1042-1044.
|
[5] |
LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Ed., 2015, 54(15):4440-4457.
|
[6] |
MANTHIRAM A, SONG B, LI W, et al. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2017, 6:125-139.
|
[7] |
PARK K J, JUNG H G, KUO L Y, et al. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-Ion Batteries[J]. Advanced Energy Materials, 2018, 8(25).Doi: 10.1002/aenm.201801202.
|
[8] |
LI Q, DANG R, CHEN M, et al. Synjournal method for long cycle life lithium-ion cathode material:Nickel-rich core-shell LiNi0.8Co0.1Mn0.1O2[J]. ACS Applied Materials & Interfaces, 2018, 10(21):17850-17860.
|
[9] |
LI L, CHEN Z, ZHANG Q, et al. A hydrolysis-hydrothermal route for the synjournal of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 3(2):894-904.
|
[10] |
WU F, WANG Z, SU Y, et al. Synjournal and characterization of ho-llow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nano-structured particles via homogeneous precipitation-hydrothermal synjournal[J]. Journal of Power Sources, 2014, 267:337-346.
|
[11] |
WU N, WU H, LIU H, et al. Solvothermal coating LiNi0.8Co0.15Al0.05O2 microspheres with nanoscale Li2TiO3 shell for long lifespan Li-ion battery cathode materials[J]. Journal of Alloys & Compounds, 2016, 665:48-56.
|
[12] |
QUAN W, TANG Z, HONG Y, et al. Hydroxyl compensation effects on the cycle stability of nickel-cobalt layered double hydroxides synthesized via solvothermal method[J]. Electrochimica Acta, 2015, 182:445-451.
|
[13] |
PENG L, ZHU Y, KHAKOO U, et al. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capabili-ty[J]. Nano Energy, 2015, 17:36-42.
|
[14] |
HUANG Z D, LIU X M, OH S W, et al. Microscopically porous,in-terconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(29):10777-10784.
|
[15] |
ZHAO J, WANG Z, WANG J, et al. Anchoring K + in Li + sites of LiNi0.8Co0.15Al0.05O2 cathode material to suppress its structural de-gradation during high-voltage cycling[J]. Energy Technology, 2018, 6(12):2358-2366.
|
[16] |
DUAN Y, YANG L, ZHANG M J, et al. Insights into Li/Ni ordering and surface reconstruction during synjournal of Ni-rich layered ox-ides[J]. Journal of Materials Chemistry A, 2019, 7(2):513-519.
|
[17] |
JOSÉ O L, CARLOS G Y, RIGOBERTO L J. Synjournal of advanced ceramics by hydrothermal crystallization and modified related methods[J]. Journal of Advanced Ceramics, 2012, 1(3):204-220.
|