[1] |
OHZUKU T, MAKIMURA Y. Layered lithium insertion matterial of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batterie[J]. Chemistry Letters, 2001, 30(7):642-643.
|
[2] |
MANTHIRAM A, SONG B, LI W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2012, 6:125-139.
|
[3] |
DING Y, MU D, WU B, et al. Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles[J]. Applied Energy, 2017, 195:586-599.
|
[4] |
NOG H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3,0.5, 0.6,0.7,0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233:121-130.
|
[5] |
LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-me- tal oxide for high-energy lithium-ion batteries[J]. Angewandte Che- mie International Edition, 2015, 54(15):4440-4457.
|
[6] |
ZHENG Jianming, KAN W H, MANTHIRAM A. Role of Mn content onthe electrochemical properties of nickel-rich layered LiNi0.8-xCo0.1Mn0.1+xO2(0.0≤x≤0.08) cathodes for lithium-ion ba- tteries[J]. ACS Applied Materials & Interfaces, 2015, 7(12):6926-6934.
|
[7] |
BADOT J C, BIANCHI V, BAFFIER N, et al. Dielectric and conductivi- ty spectroscopy of Li1-xNi1+xO2 in the range of 10-1010 Hz:Polaron ho- pping[J]. Journal of Physics:Condensed Matter, 2002, 14(28):6917-6930.
|
[8] |
ANDERSSON A M, ABRAHAM D P, HAASCH R, et al. Surface cha- racterization of electrodes from high power lithium-ion batteries[J]. Journal of the Electrochemical Society, 2002, 149(10A):1358-1369.
|
[9] |
AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials(M=Ni,Mn)[J]. Journal of the Electro- chemical Society, 2000, 147(4):1322-1331.
|
[10] |
BEYER H, MEINI S, TSIOUVARAS N, et al. Thermal and electro- chemical decomposition of lithium peroxide in non-catalyzed car- bon cathodes for Li-air batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(26):11025-11037.
|
[11] |
LIU H, YANG Y, ZHANG J. Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium- ion batteries[J]. Journal of Power Sources, 2006, 162(1):644-650.
|
[12] |
FAENZA N V, BRUCE L, LEBENS-HIGGINS Z W, et al. Editors′ choice-growth of ambient induced surface impurity species on la- yered positive electrode materials and impact on electrochemical performance[J]. Journal of the Electrochemical Society, 2017, 164(14):A3727-A3741.
|
[13] |
MATSUMOTO K, KUZUO R, TAKEYA K, et al. Effects of CO2 in air on Li deintercalation from LiNi1-x-yCoxAlyO2[J]. Journal of Power Sources, 1999, 81-82:558-561.
|
[14] |
ZHANG X, JIANG W J, ZHU X P, et al. Aging of LiNi1/3Mn1/3Co1/3O2 cathode material upon exposure to H2O[J]. Journal of Power Sour- ces, 2011, 196(11):5102-5108.
|
[15] |
SICKLINGER J, METZGER M, BEYER H, et al. Ambient storage derived surface contamination of NCM811 and NCM111:Perfor- mance implications and mitigation strategies[J]. Journal of the El- ectrochemical Society, 2019, 166(12):A2322-A2335.
|
[16] |
SHKROB I A, GILBERT J A, PHILLIPS P J, et al. Chemical wea- thering of layered Ni-rich oxide electrode materials:Evidence for cation exchange[J]. Journal of the Electrochemical Society, 2017, 164(7):A1489-A1498.
|
[17] |
MOSHTEV R, ZLATILOVA P, VASILEV S, et al. Synjournal,XRD characterization and electrochemical performance of overlithiated LiNiO2[J]. Journal of Power Sources, 1999, 81(81):434-441.
|
[18] |
VAN DER VEN A, MORGAN D, MENG Y S, et al. Phase stability of nickel hydroxides and oxyhydroxides[J]. Journal of the Electroche- mical Society, 2006, 153(2):A210-A215.
|
[19] |
LIU W, HU G, DU K, et al. Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2[J]. Journal of Power Sourc- es, 2013, 230:201-206.
|
[20] |
LIU H S, ZHANG Z R, GONG Z L, et al. Origin of deterioration for LiNiO2 cathode material during storage in air[J]. Electrochemical and Solid-State Letters, 2004, 7(7):A190-A193.
|
[21] |
SHIZUKA K, KIYOHARA C, SHIMA K, et al. Effect of CO2 on layered Li1+zNi1-x-yCoxMyO2(M=Al,Mn) cathode materials for lithi- thium ion batteries[J]. Journal of Power Sources, 2007, 166(1):233-238.
|
[22] |
LI J, DOWNIE L E, MA L, et al. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(7):A1401-A1408.
|
[23] |
GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrodeelec- trolyte interface in li-ion batteries:Current understanding and new insights[J]. The Journal of Physical Chemistry Letters, 2015, 6(22):4653-4672.
|
[24] |
GIORDANO L, KARAYAYLALIi P, YU Yang, et al. Chemical re- activity descriptor for the oxide-electrolyte interface in Li-ion ba- tteries[J]. The Journal of Physical Chemistry Letters, 2017, 8(16):3881-3887.
|
[25] |
ZHUANG G V, CHEN G, SHIMV J, et al. Li2CO3 inLiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power[J]. Journal of Power Sources, 2004, 134(2):293-297.
|
[26] |
BICHON M, SOTTA D, DUPRÉupré N, et al. Study of immersion of LiNi0.5Mn0.3Co0.2O2 material in water for aqueous processing of positive electrode for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(20):18331-18341.
|
[27] |
JUNG R, MORASCH R, KARAYAYLALI P, et al. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(2):A132-A141.
|
[28] |
JUNG R, STROBL P, MAGLIA F, et al. Temperature dependence of oxygen release from LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode materi- als for Li-ion batteries[J]. Journal of The Electrochemical Society, 2018, 165(11):A2869-A2879.
|
[29] |
RENFREW S E, MCCLOSKEY B D. Quantification of surface oxy- gen depletion and solid carbonate evolution on the first cycle of LiNi0.6Mn0.2Co0.2O2 electrodes[J]. ACS Applied Energy Materials, 2019, 2(5):3762-3772.
|
[30] |
HWANG S, CHANG W, KIM S M, et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials indu- ced by the initial charge[J]. Chemistry of Materials, 2014, 26(2):1084-1092.
|
[31] |
WANG L, MAXISCH T, CEDER G. A first-principles approach to studying the thermal stability of oxide cathode materials[J]. Che- mistry of Materials, 2007, 19(3):543-552.
|
[32] |
JOHNSON C S, LI Naichao, LEFIEF C, et al. Synjournal,characte- rization and electrochemistry of lithium battery electrodes: XLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7)[J]. Chemistry of Materials, 2008, 20(19):6095-6106.
|
[33] |
PAULSEN J, KIM J. High nickel cathode material having low soluble base content:EP, 2673823B1[P]. 2015-12-09.
|
[34] |
PRITZL D, TEUFL T, FREIBERG A T S, et al. Editors′ choice-wa- shing of nickel-rich cathode materials for lithium-ion batteries:To- wards a mechanistic understanding[J]. Journal of the Electrochemi- cal Society, 2019, 166(16):A4056-A4066.
|
[35] |
Loeffler N, KIM G T, MUELLER F, et al. In situ coating of Li[Ni0.33Mn0.33Co0.33]O2 particles to enable aqueous electrode pro- cessing[J]. ChemSusChem, 2016, 9(10):1112-1117.
|
[36] |
HANG M N, GUNSOLUS I L, WAYLAND H, et al. Impact of nano- scale lithium nickel manganese cobalt oxide(NMC) on the bacte- rium shewanella oneidensis MR-1[J]. Chemistry of Materials, 2016, 28(4):1092-1100.
|
[37] |
JEONG S, KIM J, MUN J. Self-generated coating of LiCoO2 by wa- shing and heat treatment without coating precursors[J]. Journal of the Electrochemical Society, 2018, 166(3):A5038-A5044.
|
[38] |
XIONG X, WANG Z, YUE P, et al. Washing effects on electroche- mical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 222:318-325.
|
[39] |
ZHENG X, LI X, WANG Z, et al. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery[J]. Electrochimica Acta, 2016, 191:832-840.
|
[40] |
MARTINEZ A C, GRUGEON S, CAILLEU D, et al. High reactivity of the nickel-rich LiNi1-x-yMnxCoyO2 layered materials surface to- wards H2O/CO2 atmosphere and LiPF6-based electrolyte[J]. Jour- nal of Power Sources, 2020, 468.Doi: 10.1016/j.jpowsour.2020.228204.
|
[41] |
JO J H, JO C H, YASHIRO H, et al. Re-heating effect of Ni-rich cathode material on structure and electrochemical properties[J]. Journal of Power Sources, 2016, 313:1-8.
|
[42] |
李萌, 刘雪东, 诸士春, 等. 锂离子电池正极材料超声强化水洗过程研究[J]. 化工进展, 2020, 39(2):635-642.
|
[43] |
刘大亮, 孙国平, 刘亚飞, 等. 高镍三元正极材料后处理降碱工艺[J]. 电池, 2018, 48(1):41-44.
|