[1] |
沈炎宾, 陈立桅. 高能量密度动力电池材料电化学[J]. 科学通报, 2020,65(Z1):117-126.
|
[2] |
Fan L, Wei S, Li S, et al. Recent progress of the solid-state electroly-tes for high-energy metal-based batteries[J]. Advanced Energy Ma-terials, 2018,8(11):1-31.
|
[3] |
罗成果, 肖俊, 范广新. 锂离子电池正极材料LiMn2O4用前驱体的现状与发展[J]. 无机盐工业, 2020,52(1):26-29.
|
[4] |
Umeshbabu E, Zheng B, Yang Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electroly-tes[J]. Electrochemical Energy Reviews, 2019,2(2):199-230.
|
[5] |
Takada K, Ohta N, Tateyama Y. Recent progress in interfacial nano-architectonics in solid-state batteries[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2015,25(2):205-213.
|
[6] |
Kazunori Takada. Progress in solid electrolytes toward realizing solid-state lithium batteries[J]. Journal of Power Sources, 2018,394:74-85.
|
[7] |
Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2017,8(8):1702397.
|
[8] |
李文明, 邱茂琴, 杨则恒, 等. 共沉淀法制备锂离子电池0.5Li2MnO3·0.5LiCo0.5Mn0.5O2富锂锰基正极材料[J]. 硅酸盐学报, 2020,48(2):174-181.
|
[9] |
李艳萍, 闫东伟, 周少雄, 等. 锂离子电池富锂锰基氧化物正极材料的制备及其性能[J]. 材料科学与工程学报, 2019,37(6):884-888,927.
|
[10] |
Zhang H M, Guo C, Nuli Y, et al. Solid-state electrolytes for lithium-sulfur batteries[J]. Transactions of Nanjing University of Aeronau-tics and Astronautics, 2018,35(4):5-17.
|
[11] |
张雨薇, 刘成龙, 徐志江. 新能源汽车锂电池富锂锰基正极材料掺杂改性[J]. 电源技术, 2019,43(10):1596-1600.
|
[12] |
Chen D, Yu Q, Xiang X, et al. Porous layered lithium-rich oxide nanorods:Synjournal and performances as cathode of lithium ion battery[J]. Electrochimica Acta, 2015,154:83-93.
|
[13] |
封平净, 卢鹏, 刘耀春, 等. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019,33(S1):50-52.
|
[14] |
Chen M, Xiang X, Chen D, et al. Polyethylene glycol-assisted synt-hesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery[J]. Journal of Power Sources, 2015,279:197-204.
|
[15] |
陈婧妍, 忽小宇, 吕晓霞, 等. 基于Co比例变化的富锂锰基正极材料性能研究[J]. 化工新型材料, 2019,47(S1):129-133.
|
[16] |
Wu J F, Guo X. Nanostructured metal-organic framework(MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries[J]. Small, 2019,15(27):1902429.
|
[17] |
杨金戈, 李宇杰, 陆地, 等. 微纳结构富锂锰基层状正极材料的形貌调控与储锂性能[J]. 高等学校化学学报, 2019,40(7):1495-1500.
|
[18] |
Oh D Y, Nam Y J, Park K H, et al. Excellent compatibility of solv-ate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries[J]. Advanced Energy Materials, 2015,5(22):396-400.
|
[19] |
徐金鹏, 江靖雯, 黄海富, 等. 超声辅助共沉淀法制备富锂锰基正极材料[J]. 稀有金属材料与工程, 2019,48(10):3359-3365.
|
[20] |
Unemoto A, Ogawa H, Gambe Y, et al. Development of lithium-sul-fur batteries using room temperature ionic liquid-based quasi-so-lid-state electrolytes[J]. Electrochimica Acta, 2014,125:386-394.
|
[21] |
Nagata H, Chikusa Y. An all-solid-state lithium-sulfur battery us-ing two solid electrolytes having different functions[J]. Journal of Power Sources, 2016,329(15):268-272.
|
[22] |
Yao X, Huang N, Han F, et al. High-performance all-solid-state li-thium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017,7(17):1-9.
|
[23] |
杨凯, 耿萌萌, 叶俊, 等. 富锂材料Li1.2Mn0.54Ni0.13Co0.13O2的Mo掺杂及电化学性能研究[J]. 电子元件与材料, 2019,38(3):7-15.
|
[24] |
王策, 王俊, 陈彦彬, 等. 富锂锰基正极材料Li(1.2-x)NaxNi0.13Co0.13Mn0.54O2的制备及电化学性能[J]. 材料与冶金学报, 2019,18(4):300-304.
|
[25] |
Tao X, Liu Y, Liu W, et al. Solid-state lithium-sulfur batteries op-erated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/Car-bon foam and polymer[J]. Nano Letters, 2017,17(5):2967-2972.
|
[26] |
王征荣, 张海朗. 过锂量对富锂锰基正极材料Li(1.2+x)Ni0.1Co0.2Mn0.5O2结构与电化学性能的影响[J]. 稀有金属材料与工程, 2019,48(3):941-946.
|
[27] |
Nakazawa T, Ikoma A, Kido R, et al. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries[J]. Journal of Po-wer Sources, 2016,307(1):746-752.
|
[28] |
D′Angelo A J, Panzer M J. The design of stretchable and self-hea-ling gel electrolytes via fully-zwitterionic polymer networks in sol-vate ionic liquids for Li-based batteries[J]. Chemistry of Materials, 2019,31(8):2913-2922.
|