[1] |
齐庆国. 浅谈新时期有色金属如何助力新能源汽车[J]. 世界有色金属, 2017(16):36-37.
|
[2] |
罗阿敏, 程芳, 李辉谷, 等. 盐湖卤水提锂的研究进展[J]. 化工矿物与加工, 2018,47(5):66-72.
|
[3] |
袁小晶, 马哲, 李建武. 中国新能源汽车产业锂资源需求预测及建议[J]. 中国矿业, 2019,28(8):61-65.
|
[4] |
贾磊. 电动汽车推动锂电池市场继续扩大[J]. 无机盐工业, 2018,50(12):59.
|
[5] |
苏彤, 郭敏, 刘忠, 等. 全球锂资源综合评述[J]. 盐湖研究, 2019,27(3):104-111.
|
[6] |
朱加乾, 徐宝金, 宋学文, 等. 提锂技术进展[J]. 金属矿山, 2018(8):62-69.
|
[7] |
刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2018,69(1):141-155.
|
[8] |
Nelli J R, Arthur T E, Castonia N C. Recovery of lithium from bi-tterns:US,3537813[P]. 1970-11-03.
|
[9] |
时东. 新萃取体系从高镁锂比盐湖卤水中萃取锂的研究[D]. 西宁:中国科学院青海盐湖研究所, 2013.
|
[10] |
Li H, Li L, Ji L, et al. The extraction ability and mechanism in ex-traction lithium by several organic extractants[J]. Chemical Physi-cs Letters, 2019,733:136668.
|
[11] |
李丽娟, 彭小五, 时东, 等. 含锂卤水中锂资源高效利用与绿色分离的新型萃取体系[J]. 盐湖研究, 2018,26(4):1-10.
|
[12] |
Zhou Z, Fan J, Liu X, et al. Recovery of lithium from salt-lake br-ines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent[J]. Hydrometallurgy, 2020,191:105244.
|
[13] |
Yang S, Liu G, Wang J, et al. Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid[J]. Fluid Phase Equilibria, 2019,493:129-136.
|
[14] |
刘向磊, 钟辉, 唐中杰. 盐湖卤水提锂工艺技术现状及存在的问题[J]. 无机盐工业, 2009,41(6):4-6,16.
|
[15] |
任世中, 曾英, 李陇岗, 等. 盐湖卤水提锂方法研究进展[J]. 广州化工, 2013,41(1):35-37,50.
|
[16] |
陈念, 钟辉, 颜辉. 国内外卤水提锂工艺技术现状[J]. 盐业与化工, 2014,43(3):1-4.
|
[17] |
邢红, 王肖虎, 毛新宇. 膜法盐湖卤水提锂工艺研究[J]. 盐业与化工, 2016,45(1):24-26.
|
[18] |
Pramanik B K, Asif M B, Kentish S, et al. Lithium enrichment from a simulated salt lake brine using an integrated nanofiltration-mem- brane distillation process[J]. Journal of Environmental Chemical Engineering, 2019,7(5):103395.
|
[19] |
Li W, Shi C, Zhou A, et al. A positively charged composite nanofi-ltration membrane modified by EDTA for LiCl/MgCl2 separa-tion[J]. Separation and Purification Technology, 2017,186:233-242.
|
[20] |
赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J]. 化学进展, 2017,29(7):796-808.
|
[21] |
Ji P Y, Ji Z Y, Chen Q B, et al. Effect of coexisting ions on recover-ing lithium from high Mg2+/Li+ ratio brines by selective-electrodi-alysis[J]. Separation and Purification Technology, 2018,207:1-11.
|
[22] |
Qiu Y, Yao L, Tang C, et al. Integration of selectrodialysis and se-lectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide[J]. Desalination, 2019,465:1-12.
|
[23] |
Liu G, Zhao Z, He L. Highly selective lithium recovery from high Mg/Li ratio brines[J]. Desalination, 2020,474:114185.
|
[24] |
赵晓昱. 海卤水提锂新技术研究现状及展望[J]. 高校化学工程学报, 2017,31(3):497-508.
|
[25] |
Zhao X, Li G, Feng M, et al. Semi-continuous electrochemical ex-traction of lithium from brine using CF-NMMO/AC asymmetric hybrid capacitors[J]. Electrochimica Acta, 2020,331:135285.
|
[26] |
He L, Xu W, Song Y, et al. New insights into the application of lithium-ion battery materials:selective extraction of lithium from brines via a rocking-chair lithium-ion battery system[J]. Global Challenges, 2018,2(2):1700079.
|
[27] |
Wang Q, Du X, Gao F, et al. A novel H1.6Mn1.6O4/reduced grapheme oxide composite film for selective electrochemical capturing lithi-um ions with low concentration[J]. Separation and Purification Technology, 2019,226:59-67.
|
[28] |
张皓, 张超磊, 王倩, 等. 吸附法盐湖卤水提锂专利分析[J]. 河南科技, 2016(12):88-91.
|
[29] |
叶流颖, 曾德文, 陈驰, 等. 卤水提锂吸附剂应用研究进展[J]. 无机盐工业, 2019,51(3):16-19.
|
[30] |
张梦华, 聂骁垚, 胡潘辉, 等. 吸附法从盐湖卤水中提锂研究进展[J]. 广州化工, 2012,40(15):27-29.
|
[31] |
辛文萍, 靳彩颖, 王青青, 等. 盐湖卤水提锂吸附剂合成进展[J]. 山东化工, 2016,45(17):58-59,62.
|
[32] |
Guo X, Hu S, Wang C, et al. Highly efficient separation of magne-sium and lithium and high-valued utilization of magnesium from salt lake brine by a reaction-coupled separation technology[J]. Industrial & Engineering Chemistry Research, 2018,57(19):6618-6626.
|
[33] |
Sun Y, Guo X, Hu S, et al. Highly efficient extraction of lithium from salt lake brine by LiAl-layered double hydroxides as lithium-ion-selective capturing material[J]. Journal of Energy Chemistry, 2019,34:80-87.
|
[34] |
Li Y, Chen X, Liu X, et al. Extraction of lithium from brine solution by hydrolysis of activated aluminum powder[J]. JOM, 2018,70(8):1449-1453.
|
[35] |
毛新宇. 吸附法盐湖卤水提锂的技术探究[J]. 化工管理, 2015(24):96.
|
[36] |
史丹丹, 许乃才. 锰氧化物锂离子筛盐湖卤水提锂研究进展[J]. 无机盐工业, 2015,47(11):11-14,19.
|
[37] |
刘炳光, 祖晓冬, 李建生, 等. 负载型锂离子筛吸附剂研究进展[J]. 无机盐工业, 2019,51(9):12-16.
|
[38] |
Chen L, Xu X, Song J, et al. Microwave assisted hydrothermal synt-hesis of MnO2·0.5H2O ion-sieve for lithium ion selective adsorp-tion[J]. Separation Science and Technology, 2016,51(5):874-882.
|
[39] |
Xue F, Wang B, Chen M, et al. Fe3O4-doped lithium ion-sieves for lithium adsorption and magnetic separation[J]. Separation and Purification Technology, 2019,228:115750.
|
[40] |
Marthi R, Smith Y R. Selective recovery of lithium from the great salt lake using lithium manganese oxide-diatomaceous earth com-posite[J]. Hydrometallurgy, 2019,186:115-125.
|