[1] |
Kopp R E, Kemp A C, Horton B P , et al. Temperature-driven global sea-level variability in the Common Era[J]. Proceedings of the Na-tional Academy of Sciences, 2016,113(11):1434-1441.
|
[2] |
Kemp A C, Horton B P, Donnelly J P , et al. Climate related sea-level variations over the past two millennia[J]. Proceedings of the Natio-nal Academy of Sciences, 2011,108(27):11017-11022.
|
[3] |
Liu Shuqiao . State of Climate in 2017—Extreme weather and high im-pacts[DB/OL]. WMO, 2018-03-22..
|
[4] |
Morvova M, Morva I, Hanic F . Single step removal of CO2 incorpora-ting CO2 and nitrogen fixation from gas phase in electric dischar-ge [C]∥Eliasson B,Riemer P,Wokaun A.4th International Con-ference on Greenhouse Gas Control Technologies (GHGT-4).Amsterdam:International Journal of Greenhouse Gas Control, 1999: 137-142.
|
[5] |
Fiaschi D, Pellegrini G . Capture of CO2 from exhausts emissions with a solution of potassium phosphate [C]∥Frangopoulos C A,Rakopo-ulos C D,Tsatsaronis G.19th International Conference on Efficien-cy,Cost,Optimization,Simulation and Environmental Impact of Energy Systems(ECOS 2006).Aghia Pelagia:ENERGY, 2006.
|
[6] |
Greenberg S E . Creating a sequestration capacity building and kno-wledge sharing program[J]. Energy Procedia, 2013,37:7291-7298.
|
[7] |
Bui M, Adjiman C S, Bardow A , et al. Carbon capture and stora-ge(CCS):the way forward[J]. Energy & Environmental Science, 2018,11(Part A):1062-1176.
|
[8] |
王升 . CCUS技术推广为何遇冷[EB/OL].人民网, 2018-08-27. .
|
[9] |
Li Ping, Pan Shuyuan . Challenges and perspectives on carbon fixa-tion and utilization technologies:an overview[J]. Aerosol and AirQuality Research, 2016,16:1327-1328.
|
[10] |
Bennaceur K, Gielen D, Kerr T , et al. CO2 capture and storage:a key carbon abatement option[M]. Paris:International Energy Agen-cy, 2008.
|
[11] |
Kumar A, Madden D G, Lusi M , et al. Direct air capture of CO2 by physisorbent materials[J]. Angewandte Chemie, 2016,127(48):14580-14585.
|
[12] |
Evgenia M, Solomom B, Paul S , et al. CO2 capture and storage(CCS)cost reduction via infrastructure right-sizing[J]. Chemical Engi-neering Research and Design, 2017,119:130-139.
|
[13] |
方陵生 . 为二氧化碳排放算笔帐[J].世界科学, 2007(11):17-18.
|
[14] |
Ramaraj R, Tsai D W, Chen P H . Carbon dioxide fixation of fresh-water microalgae growth on natural water medium[J]. Ecological Engineering, 2015,75(78):86-92.
|
[15] |
Acien Fernandez F G, Gonzalea-Lopez C V, Fernandez-Sevilla J M , et al. Conversion of CO2 into biomass by microalgae:how reali-stic a contribution may it be to significant CO2 removal?[J]. Appli-ed Microbiology & Biotechnology, 2012,96(3):577-586.
|
[16] |
Judd S, Lj V D B, Shurair M , et al. Algal remediation of CO and nu-trient discharges:A review[J]. Water Research, 2015,87:356-366.
|
[17] |
Hsueh H T, Chu H, Yu S T . A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scru-bber by hot spring and marine algae[J]. Chemosphere, 2007,66(5):878-886.
|
[18] |
Chang W T, Lee M, Den W . Simultaneous carbon capture,biomass production,and diary wastewater purification by spirulina maxima photobioreaction[J]. Industrial & Engineering Chemistry Resear-ch, 2013,52(5):2046-2055.
|
[19] |
Cavenati S, Grande C A . Adsorption equilibrium of methane,car-bon dioxide,and nitrogen on zeolite 13X at high pressures[J]. Jo-urnal of Chemical & Engineering Data, 2004,49(4):1095-1101.
|
[20] |
Armandi M, Garrone E, Carlos O A , et al. Thermodynamics of car-bon dioxide adsorption on the protonic zeolite H-ZSM-5[J]. Ch-emphyschem, 2009,10(18):3316-3319.
|
[21] |
Martunus H Z, Wiheeb A D, Kim J , et al. In situ carbon dioxide capture and fixation from a hot flue gas[J]. International Journal of Greenhouse Gas Control, 2012,6:179-188.
|
[22] |
Arean C O, Delgado M R, Bulanek R , et al. Combined microcalori-metric and IR spectroscopic study on carbon dioxide adsorption in H-MCM-22[J]. Applied Surface Science, 2014,316:532-536.
|
[23] |
Zheng X Y, Diao Y F, He B S, et al. Carbon dioxide recovery from flue gases by ammonia scrubbing [C]∥Gale J,Kaya Y.6th Interna-tional Conference on Greenhouse Gas Control Technologies.Kyoto:Greenhouse Gas Control Technologies, 2003: 193-197.
|
[24] |
宿辉, 崔琳 . 二氧化碳的吸收方法及机理研究[J]. 环境科学与管理, 2006,31(8):79-81.
|
[25] |
Xiao S, Liu H, Gao H , et al. Kinetics and mechanism study of homo-geneous reaction of CO2,and blends of diethanolamine and mo-noethanolamine using the stopped-flow technique[J]. Chemical Engineering Journal, 2017,316:592-600.
|
[26] |
Park S, Min J, Lee M G , et al. Characteristics of CO2 fixation by chemical conversion to carbonate salts[J]. Chemical EngineeringJournal, 2013,231:287-293.
|
[27] |
Kang D, Park S, Jo H , et al. Carbon fixation using calcium oxide by an aqueous approach at moderate conditions[J]. Chemical Engi-neering Journal, 2014,248:200-207.
|
[28] |
Park S, Bang J H, Song K , et al. Barium carbonate precipitation as a method to fix and utilize carbon dioxide[J]. Chemical Engineering Journal, 2016,284:1251-1258.
|
[29] |
Chen P C, Shi W, Du R , et al. Crystallization kinetics of barium carbonate crystals in a lab-scale bubble-column scrubber[J]. Jour-nal of the Taiwan Institute of Chemical Engineers, 2014,45(5):2418-2426.
|
[30] |
Kang D, Lee M G, Jo H , et al. Carbon capture and utilization using industrial wastewater under ambient conditions[J]. Chemical En-gineering Journal, 2017,308:1073-1080.
|
[31] |
Zhang S, Chen Y, Li F , et al. Fixation and conversion of CO2 using ionic liquids[J]. Catalysis Today, 2006,115(1/2/3/4):61-69.
|
[32] |
Huang Y, Cui G, Zhao Y , et al. Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids[J]. Angewandte Chemie International Edition, 2017,56(43):13293-13297.
|
[33] |
Xu Y J . CO2 absorption behavior of azole-based protic ionic liquids:Influence of the alkalinity and physicochemical properties[J]. Jo-urnal of CO2 Utilization, 2017,19:1-8.
|
[34] |
周维卫, 传秀云, 周述慧 . 蛇纹石及其固体废弃物固定CO2的研究现状[J]. 矿物学报, 2010(s1):179-180.
|
[35] |
Bobicki E R, Liu Q, Xu Z , et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy & Combustion Science, 2012,38(2):302-320.
|
[36] |
Arias B, Alonso M, Abanades C . CO2 capture by calcium looping at relevant conditions for cement plants:experimental testing in a 30 kWth Pilot Plant[J]. Industrial & Engineering Chemistry Re-search, 2017,56(10):2634-2640.
|
[37] |
Ebranhimi A, Saffari M, Hong Y , et al. Mineral sequestration of CO2 using saprolite mine tailings in the presence of alkaline industrial wastes[J]. Journal of Cleaner Production, 2018,188:686-697.
|
[38] |
莫淳, 廖文杰, 梁斌 , 等. 工业固废活化钾长石-CO2 矿化提钾的生命周期碳排放与成本评价[J]. 化工学报, 2017,68(6):2501-2509.
|
[39] |
谢和平, 谢凌志, 王昱飞 , 等. 全球二氧化碳减排不应是CCS,应是CCU[J]. 四川大学学报, 2012,44:1-5.
|
[40] |
Giwa A, Dufour V, Al M F , et al. Brine management methods:recent innovations and current status[J]. Desalination, 2017,407:1-23.
|
[41] |
Wang W, Hu M, Zheng Y , et al. CO2 fixation in Ca 2+-/Mg 2+-rich aqueous solutions through enhanced carbonate precipitation [J]. Ind.Eng.Chem.Res., 2011,50(13):8333-8339.
|
[42] |
Zhao Y, Yuan J, Zhang J , et al. A different approach for seawater decalcification pretreatment using carbon dioxide as precipita-tor[J]. Desalination, 2013,322:151-158.
|
[43] |
Zhao Y, Cao H, Xie Y , et al. Mechanism studies of a CO2 partici-pant softening pretreatment process for seawater desalination[J]. Desalination, 2016,393:166-173.
|
[44] |
Zhao Y, Zhang Y, Liu J , et al. Trash to treasure:Seawater pretreat-ment by CO2 mineral carbonation using brine pretreatment waste of soda ash plant as alkali source[J]. Desalination, 2017,407:85-92.
|
[45] |
Jose-Luis G M, Ammar E, Jennie M , et al. Conceptual design of a CO2 capture and utilisation process based on calcium and magne-sium rich brines[J]. Journal of CO2 Utilization, 2018,27:161-169.
|
[46] |
Zhao Y, Wu M, Yuan J , et al. Thorough conversion of CO2 through two-step accelerated mineral carbonation in the MgCl2-CaCl2-H2O system[J]. Separation and Purification Technology, 2019,210:343-354.
|