Inorganic Chemicals Industry ›› 2020, Vol. 52 ›› Issue (8): 30-35.doi: 10.11962/1006-4990.2019-0498
• Research & Development • Previous Articles Next Articles
Huang Qiumei1,2(),Lü Xiaowei1,2,Tan Jialin1,2,Li Lijun1,2,Cheng Hao1,2,Feng Jun1,2,Huang Wenyi1,2(
)
Received:
2020-02-26
Online:
2020-08-10
Published:
2020-08-12
Contact:
Huang Wenyi
E-mail:1160743521@qq.com;hwenyii@tom.com
CLC Number:
Huang Qiumei,Lü Xiaowei,Tan Jialin,Li Lijun,Cheng Hao,Feng Jun,Huang Wenyi. Preparation of Sm doped ZnO QDs and its fluorescence performance[J]. Inorganic Chemicals Industry, 2020, 52(8): 30-35.
[1] |
Wang P, Cao L, Wu Y, et al. A cathodic photoelectrochemical sensor for chromium(Ⅵ) based on the use of PbS quantum dot semiconductors on an ITO electrode[J]. Mikrochimica Acta, 2018,185(7):356.
doi: 10.1007/s00604-018-2883-6 pmid: 29974248 |
[2] | Nezhad-Mokhtari P, Arsalani N, Ghorbani M, et al. Development of biocompatible fluorescent gelatin nanocarriers for cell imaging and anticancer drug targeting[J]. Journal of Materials Science, 2018,53(15):10679-10691. |
[3] | Sheung J, Ge P, Lim S J, et al. Structural contributions to hydrodynamic diameter for quantum dots optimized for live-cell single-molecule tracking[J]. Journal of Physical Chemistry C, 2018.Doi: 10.1021/acs.jpcc.8b02516. |
[4] |
Kong L, Zhang L, Meng Z, et al. Ultrastable,highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting[J]. Nanotechnology, 2018,29(31).Doi: 10.1088/1361-6528/aac39c.
doi: 10.1088/1361-6528/aac36a pmid: 29741498 |
[5] | Chai Y Y, Qu D P, Ma D K, et al. Carbon quantum dots/Zn2+ ions doped-CdS nanowires with enhanced photocatalytic activity for reduction of 4-nitroaniline to p-phenylenediamine [J]. Applied Surface Science, 2018,450:1-8. |
[6] | Peng Z, Liu Z, Liu Y, et al. Improving on the interparticle connection for performance enhancement of flexible quantum dot sensitized solar cells[J]. Materials Research Bulletin, 2018,105:91-97. |
[7] | Ye Y. Photoluminescence property adjustment of ZnO quantum dots synthesized via sol-gel method[J]. Journal of Materials Science Materials in Electronics, 2018,29:4967-4974. |
[8] |
Roshini A, Jagadeesan S, Arivazhagan L, et al. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and antimetastatic effects in metastatic lung cancer cell line[J]. Materials Science & Engineering, 2018,92:477-488.
doi: 10.1016/j.msec.2018.06.073 pmid: 30184773 |
[9] |
Ensafi A A, Zakery M, Rezaei B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer[J]. Molecular and Biomolecular Spectroscopy, 2019,206:460-465.
doi: 10.1016/j.saa.2018.08.040 pmid: 30172874 |
[10] | Dijken A V, Meulenkamp E A, Vanmaekelbergh D, et al. Identification of the transition responsible for the visible emission in ZnO using quantum size effects[J]. Journal of Luminescence, 2000,90(3/4):123-128. |
[11] |
Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behindgreen photoluminescence in ZnO phosphor powders[J]. Journal of Applied Physics, 1996,79(10):7983-7990.
doi: 10.1063/1.362349 |
[12] |
van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation[J]. Journal of Physical Chemistry B, 2000,104(8):1715-1723.
doi: 10.1021/jp993327z |
[13] | Xiong H M, Shchukin D, Möhwald H, et al. Sonochemical synjournal of highly luminescent zinc oxide nanoparticles doped with magnesium(Ⅱ)[J]. 2009,48(15):2727-2731. |
[14] | Huang W Y, Lv X W, Tan J L, et al. Regulable preparation of the oxygen vacancy of ZnO QDs and their fluorescence performance[J]. Journal of Molecular Structure, 2019,1195:653-658. |
[15] |
Jaggi N, Rathee N. Samarium3+-doped CdSe quantum dots for improved electro-optical properties [J]. Materials Today: Proceedings, 2019,16:201-205.
doi: 10.1016/j.matpr.2019.05.246 |
[16] | Yang J, Li X, Lang J, et al. Effects of mineralizing agent on the morphologies and photoluminescence properties of Eu3+-doped ZnO nanomaterials [J]. Journal of Alloys & Compounds, 2011,509(41):10025-10031. |
[17] |
Liu Y, Ai K, Yuan Q, et al. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging[J]. Biomaterials, 2011,32(4):1185-1192.
doi: 10.1016/j.biomaterials.2010.10.022 pmid: 21055806 |
[18] |
Sun L W, Shi H Q, Li W N, et al. Lanthanum-doped ZnO quantum dots with greatly enhanced fluorescent quantum yield[J]. Journal of Materials Chemistry, 2012,22(17):8221-8227.
doi: 10.1039/c2jm00040g |
[19] |
Huang W Y, Bai D W, Li L J, et al. The synjournal of ultrasmall ZnO@PEG nanoparticles and its fluorescence properties[J]. Journal of Sol-Gel Science and Technology, 2015,74(3):718-725.
doi: 10.1007/s10971-015-3653-0 |
[20] |
Manikandan A, Vijaya J J, Narayanan S, et al. Comparative investigation of structural,optical properties and dye-sensitized solar cell applications of ZnO nanostructures[J]. Journal of Nanoscience and Nanotechnology, 2014,14(3):2507-2514.
doi: 10.1166/jnn.2014.8499 pmid: 24745255 |
[21] |
Shakir M, Faraz M, Sherwani A, et al. Photocatalytic degradation of the Paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro Cytotoxicity assay[J]. Journal of Luminescence, 2016,176:159-167.
doi: 10.1016/j.jlumin.2016.03.027 |
[22] | Ahmed M A M, Meyer W E, Nel J M. Structural,optical and electrical properties of the fabricated Schottky diodes based on ZnO,Ce and Sm doped ZnO films prepared via wet chemical technique[J]. Materials Research Bulletin, 2019,115:12-18. |
[23] |
Bomila R, Srinivasan S, Gunasekaran S, et al. Enhanced photocat alytic degradation of methylene blue dye,opto-magnetic and antibacterial behaviour of pure and La-doped ZnO nanoparticles[J]. Journal of Superconductivity and Novel Magnetism, 2018,31:855-864.
doi: 10.1007/s10948-017-4261-8 |
[24] |
Pascariu P, Cojocaru C, Olaru N, et al. Novel rare earth (RE-La,Er,Sm) metal doped ZnO photocatalysts for degradation of Congo-reddye: Synjournal,characterization and kinetic studies[J]. Journal of Environmental Management, 2019,239:225-234.
doi: 10.1016/j.jenvman.2019.03.060 pmid: 30901700 |
[25] | Caglar Y, Caglar M, Ilican S.XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes[J]. Optik, 2018,164:424-432. |
[26] | Thool G S, Arunakumari M, Singh A K, et al. Shape tunable synjournal of Eu-and Sm-doped ZnO microstructures:A morphological evaluation[J]. Bulletin of Materials Science, 2015,38(6):1519-1525. |
[27] | Wang D D, Xing G Z, Yang J H, et al. Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers[J]. Journal of Alloys and Compounds, 2010,504(1):22-26. |
[28] |
Ahmed M, Doyle B P, Carleschi E, et al. Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition[J]. Materials Science in Semiconductor Processing, 2018,79:53-60.
doi: 10.1016/j.mssp.2018.02.003 |
[29] | Ahmed M A, Coetsee L, Meyer W E, et al. Influence(Ce and Sm)co-doping ZnO nanorods on the structural,optical and electrical properties of the fabricated Schottky diode using chemical bath deposition[J]. Journal of Alloys and Compounds, 2019,810:151929. |
[30] | Ning H, Wu X, Chai L, et al. Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors[J]. Sensors & Actuators B Chemical, 2010,150(1):230-238. |
[31] | Halliburton L E, Giles N C, Garces N Y, et al. Production of native donors in ZnO by annealing at high temperature in Zn vapor[J]. Applied Physics Letters, 2005,87(17):172108. |
[32] | Look D C, Reynolds D C, Hemsky J W, et al. Production and annealing of electron irradiation damage in ZnO[J]. Applied Physics Letters, 1999,75(6):811-813. |
[33] | Wang H P, Jiang H, Wang X M . Construction of strong alkaline microcavities for facile synjournal of fluorescence-tunable ZnO quantum dots[J]. Chemical Communications, 2010,46(37):6857-7052. |
[1] | LI Yongxiang, LIU Chenxi, LI Yundong, MA Hang, MEI Lianping, DANG Hui, SUN Zhi, WAN Banglong. Research progress of preparation technology of black phosphorus [J]. Inorganic Chemicals Industry, 2025, 57(3): 18-29. |
[2] | LI Chao, WANG Liping, GAO Guimei, ZHANG Yunfeng, HONG Yu, LIU Darui, XU Lijun, CUI Yongjie. Study on reaction mechanism of acid leaching lithium from circulating fluidized bed fly ash [J]. Inorganic Chemicals Industry, 2025, 57(3): 101-107. |
[3] | LI Zihan, ZHANG Jiaqi, LI Shizhuo, LI Xinyu, LIU Shaozhuo, WANG Yihao, HAO Yucui, LIU Jian, LI Yanhua. Study on synthesis and catalytic mechanism of CdS/g-C3N4 composite photocatalyst [J]. Inorganic Chemicals Industry, 2025, 57(3): 124-132. |
[4] | ZHANG Zhufeng, REN Yinshuan. Study on diluted magnetic semiconductor Cr-doped CdS nanostructures and magnetic properties [J]. Inorganic Chemicals Industry, 2025, 57(3): 50-57. |
[5] | ZHANG Bao, QUAN Kaidong, WANG Yongfeng, HAN Fei, SHI Aiwen, LIU Xin, WANG Xiaomin. Study on fabrication of nanoflower-like Fe y -NiCoS x @NF catalysts and their application in hydrogen evolution and oxygen evolution during seawater electrolysis [J]. Inorganic Chemicals Industry, 2025, 57(2): 130-137. |
[6] | CHEN Xue, OUYANG Quansheng, SHAO Jiaojing. Recent research progress of lithium-sulfur batteries based on solid-solid reaction mechanism [J]. Inorganic Chemicals Industry, 2024, 56(9): 12-23. |
[7] | FANG Fan, YAO Benlin, XIAO Yiqun, JIA Yanhong, CHEN Hui, LI Bin, HE Hui. Research progress on dissolution behavior and mechanism of uranium dioxide in nitric acid [J]. Inorganic Chemicals Industry, 2024, 56(9): 34-43. |
[8] | CHEN Can, CAO Jun, ZHANG Yongbo. Research on high throughput determination method of fluorine and leaching toxicity in aluminum ash [J]. Inorganic Chemicals Industry, 2024, 56(8): 104-109. |
[9] | WANG Jianjie, SHU Xiaolong, XIAO Xia, WANG Peng, FAN Xiaoqiang, KONG Lian, XIE Zean, ZHAO Zhen. Study on synthesis of hierarchical flower⁃like ZSM-5 zeolite and its catalytic performance for n-octane cracking [J]. Inorganic Chemicals Industry, 2024, 56(8): 139-146. |
[10] | LI Zhao, YIN Youyou, LIU Chenhui, WANG Fang, GAO Jiyun. Study on preparation of two⁃dimensional titanium carbide/zinc oxide nanoparticles and their ethanol gas sensitive properties [J]. Inorganic Chemicals Industry, 2024, 56(8): 33-39. |
[11] | XIONG Cailian, SUN Guobin, LI Heng, XING Feng. Study on structure and electrical properties of Ba(Zr0.15Ti0.85)O3 doped ceramics [J]. Inorganic Chemicals Industry, 2024, 56(8): 60-66. |
[12] | XUE Shan, LIU Lu, DAI Jiansheng, LI Qing, FENG Ze, LI Yineng. Study on electrochemical properties of europium⁃doped LiFePO4 cathode material for lithium⁃ion battery [J]. Inorganic Chemicals Industry, 2024, 56(8): 67-73. |
[13] | ZHAO Mingzhi, DUAN Hongchang, SUN Xueqin, LÜ Penggang, LI Xueli, LIU Tao, CAO Gengzhen. Study on effect of hydrothermal aging on physicochemical properties of propylene additives [J]. Inorganic Chemicals Industry, 2024, 56(7): 55-60. |
[14] | HU Dian, GUO Ze, ZHANG Hanquan, LU Manman. Research on effects of roasting process and typical impurities on reduction and decomposition process of phosphogypsum [J]. Inorganic Chemicals Industry, 2024, 56(7): 88-95. |
[15] | TU Yanping, BAI Dengxian, CHENG Shukai, XIE Junjie, HUANG Zhiliang, CHEN Guofu. Effect of high temperature modification of mineral powder and quicklime on properties of phosphogypsum cement based materials [J]. Inorganic Chemicals Industry, 2024, 56(6): 94-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297