Inorganic Chemicals Industry ›› 2023, Vol. 55 ›› Issue (8): 77-83.doi: 10.19964/j.issn.1006-4990.2022-0635
• Reviews and Special Topics • Previous Articles Next Articles
GUI Changqing1,2(), WANG Yajing1, LING Changjian2, WANG Huaiyou3, TANG Zhongfeng1,2,3(
)
Received:
2022-10-30
Online:
2023-08-10
Published:
2023-08-25
Contact:
TANG Zhongfeng
E-mail:guichangqing@sinap.ac.cn;tangzhongfeng@sinap.ac.cn
CLC Number:
GUI Changqing, WANG Yajing, LING Changjian, WANG Huaiyou, TANG Zhongfeng. Research progress of preparation and modification of MgO-based CO2 adsorbents[J]. Inorganic Chemicals Industry, 2023, 55(8): 77-83.
Table 1
MgO adsorbents prepared by different methods and their CO2 adsorption properties"
镁源前驱体 | 制备方法 | 煅烧条件 | 比表面积/ (m2·g-1) | CO2吸附条件 | 最大吸附容 量/(mmol·g-1) |
---|---|---|---|---|---|
Mg(Ac)2·4H2O[ | 直接煅烧 | 400 ℃,空气,2 h | 252.0 | 50 ℃,纯CO2,240 min | 1.73 |
Mg(NO3)2·6H2O[ | 直接煅烧 | 500 ℃,空气,12 h | 13.5 | 100 ℃,纯CO2,15 min | 0.35 |
Mg(OH)2[ | 直接煅烧 | 500 ℃,空气,12 h | 156.0 | 100 ℃,纯CO2,15 min | 1.28 |
菱镁矿[ | 直接煅烧 | 550 ℃,空气,4 h | 118.6 | 60 ℃,10% CO2、90% N2(体积分数),- | 1.82 |
水镁矿[ | 直接煅烧 | 550 ℃,空气,0.5 h | 102.9 | 200 ℃,10% CO2、90% N2(体积分数),- | 1.73 |
MgSO4·7H2O[ | 沉淀 | 450 ℃,空气,- | 211.3 | 50 ℃,15% CO2、85% N2(体积分数),240 min | 1.01 |
MgCl2·6H2O[ | 沉淀 | 450 ℃,-,2 h | 46.7 | 200 ℃,10% CO2、90% N2(体积分数),- | 1.55 |
Mg(NO3)2·6H2O[ | 沉淀 | 500 ℃,空气,9 h | 331.0 | 25 ℃,纯CO2,120 min | 1.56 |
(CH3COO)2Mg·4H2O[ | 溶胶-凝胶 | 550 ℃,空气,- | 156.5 | 50 ℃,15% CO2、85% N2(体积分数),240 min | 1.38 |
MgCl2·6H2O[ | 固相反应 | 500 ℃,-,2 h | 100.0 | 200 ℃,10% CO2、90% N2(体积分数),- | 2.39 |
Mg(OCH3)2[ | 气凝胶 | 450 ℃,纯N2,5 h | 686.0 | 30 ℃,15% CO2、85% N2(体积分数),60 min | 1.38 |
Table 2
MgO composite adsorbents prepared by different methods and their CO2 adsorption properties"
镁源前驱体 | 掺杂材料 | 吸附剂 | 制备 方法 | 比表面积/ (m2·g-1) | 吸附条件 | 最大吸附容量/(mmol·g-1) |
---|---|---|---|---|---|---|
Mg(Ac)2·4H2O[ | Cd(Ac)2·2H2O | MgO-CdO | 共沉淀 | 41.9 | 300 ℃,纯CO2,60 min | 9.55 |
Mg5(CO3)4(OH)2·4H2O[ | ZrO(OH)2·xH2O | MgO-ZrO2 | 机械研磨 | - | 330 ℃,纯CO2,180 min | 7.50 |
Mg(NO3)2·6H2O[ | γ-Al2O3 | MgO-Al2O3 | 浸渍 | 200.9 | 60 ℃,13% CO2、87% N2(体积分数),60 min | 1.36 |
Mg(NO3)2·6H2O[ | Al(NO3)3·9H2O | MgO-Al2O3 | 共煅烧 | 177.0 | 200 ℃,10% CO2、90% N2(体积分数),60 min | 2.98 |
Mg(NO3)2·6H2O[ | D-葡萄糖和尿素 | MgO-C | 牺牲模板 | 121.3 | 300 ℃,纯CO2,60 min | 7.75 |
无水MgCl2[ | 甘蔗渣 | MgO-C | 共煅烧 | 111.3 | 35 ℃,纯CO2,180 min | 5.34 |
MgCl2⋅6H2O[ | 稻壳 | MgO-C | 共煅烧 | 44.0 | 200 ℃,10% CO2、90% N2(体积分数),- | 4.56 |
Table 3
Preparation methods of molten salt-doped MgO and their CO2 adsorption capacity"
镁源前驱体 | 掺杂熔盐 | 掺杂方法 | 比表面积/ (m2·g-1) | CO2吸附条件 | 最大吸附容 量/(mmol·g-1) |
---|---|---|---|---|---|
Mg5(CO3)4(OH)2·xH2O[ | NaNO3 | 直接研磨 | - | 330 ℃,纯CO2,60 min | 15.00 |
Mg(NO3)2·6H2O[ | LiNO3/NaNO3/KNO3 | 水溶 | - | 300 ℃,纯CO2,240 min | 13.45 |
4MgCO3·Mg(OH)2·4H2O[ | NaNO3 | 水溶 | 28.90 | 350 ℃,纯CO2,240 min | 17.00 |
MgO[ | K2CO3/KNO3/NaNO3 | 水溶 | 28.87 | 300 ℃,10% CO2(体积分数),240 min | 15.45 |
MgO[ | LiNO3/KNO3/Na2CO3/K2CO3 | 醇溶 | - | 325 ℃,纯CO2,240 min | 19.06 |
Mg(CH3COO)2·4H2O[ | NaNO3/NaNO2 | 醇溶 | 23.00 | 350 ℃,85% CO2(体积分数),50 min | 19.80 |
[CH3COCHC(O)CH3]2Mg.2H2O[ | LiNO3/NaNO2/KNO2 | 醇溶 | - | 340 ℃,纯CO2,240 min | 15.70 |
1 | WANG Zirui, LIU Weihua, LING Changjian,et al.CO2 capture behavior and chemical structure of the alkali zirconate-silicate hybrid sorbent from ZrSiO4 by alkali activation method[J].Journal of CO2 Utilization,2021,51:101639. |
2 | SONG Chunshan.Global challenges and strategies for control,conversion and utilization of CO2 for sustainable development involving energy,catalysis,adsorption and chemical processing[J].Catalysis Today,2006,115(1/2/3/4):2-32. |
3 | MONDAL M K, BALSORA H K, VARSHNEY P.Progress and trends in CO2 capture/separation technologies:A review[J].Energy,2012,46(1):431-441. |
4 | PIRES J C M, MARTINS F G, ALVIM-FERRAZ M C M,et al.Recent developments on carbon capture and storage:An overview[J].Chemical Engineering Research and Design,2011,89(9):1446-1460. |
5 | XU Yongqing, LUO Cong, SANG Huiying,et al.Structure and surface insight into a temperature-sensitive CaO-based CO2 sorbe-nt [J].Chemical Engineering Journal,2022,435:134960. |
6 | CHI Changyun, LI Yingjie, MA Xiaotong,et al.CO2 capture performance of CaO modified with by-product of biodiesel at calcium looping conditions[J].Chemical Engineering Journal,2017,326:378-388. |
7 | CHOI D, PARK Y.Structural modification of salt-promoted MgO sorbents for intermediate temperature CO2 capture[J].Nanoscale Advances,2022,4(14):3083-3090. |
8 | CAI Yifan, LIU Wei, SUN Ze,et al.Granulation of alkaline metal nitrate promoted MgO adsorbents and the low-concentration CO2 capture performance in the fixed bed adsorber[J].Journal of CO2 Utilization,2022,61:102047. |
9 | STEFANELLI E, PUCCINI M, VITOLO S,et al.CO2 sorption kinetic study and modeling on doped-Li4SiO4 under different temperatures and CO2 partial pressures[J].Chemical Engineering Jo- urnal,2020,379:122307. |
10 | TONG Yichao, CHEN Shuzhen, HUANG Xin,et al.CO2 capture by Li4SiO4 sorbents:From fundamentals to applications[J].Separation and Purification Technology,2022,301:121977. |
11 | PELTZER D, MÚNERA J, CORNAGLIA L.Operando Raman spectroscopic studies of lithium zirconates during CO2 capture at high temperature[J].RSC Advances,2016,6(10):8222-8231. |
12 | XIAO Qiang, TANG Xiaodan, LIU Yefeng,et al.Citrate route to prepare K-doped Li2ZrO3 sorbents with excellent CO2 capture properties[J].Chemical Engineering Journal,2011,174(1):231-235. |
13 | WANG Zirui, LIU Weihua, TANG Zhongfeng,et al. In situ Raman and XRD study of CO2 sorption and desorption in air by a Na4SiO4-Na2CO3 hybrid sorbent[J].Physical Chemistry Chemical Physics,2020,22(46):27263-27271. |
14 | LING Changjian, WANG Zirui, GUI Changqing,et al.High temperature CO2 capture performance and kinetic analysis of Na4SiO4 ceramics[J].Ceramics International,2022,48(22):33048-33057. |
15 | 许春辉,王峰,凌长见,等.熔盐改性的金属氧化物捕获二氧化碳研究进展[J].无机盐工业,2023,55(5):1-7. |
XU Chunhui, WANG Feng, LING Changjian, al at.Research progress of CO2 capture by metal oxides modified by molten sa-lts[J].Inorganic Chemicals Industry,2023,55(5):1-7. | |
16 | GAO Wanlin, VASILIADES M A, DAMASKINOS C M,et al.Molten salt-promoted MgO adsorbents for CO2 capture:Transient kinetic studies[J].Environmental Science & Technology,2021,55(8):4513-4521. |
17 | HASSANZADEH A, ABBASIAN J.Regenerable MgO-based sorbents for high-temperature CO2 removal from syngas:1.Sorbent development,evaluation,and reaction modeling[J].Fuel,2010,89(6):1287-1297. |
18 | GUO Yafei, TAN Chang, SUN Jian,et al.Nanostructured MgO sorbents derived from organometallic magnesium precursors for post-combustion CO2 capture[J].Energy & Fuels,2018,32(6):6910-6917. |
19 | ELVIRA G B, FRANCISCO G C, VÍCTOR S M,et al.MgO-based adsorbents for CO2 adsorption:Influence of structural and textural properties on the CO2 adsorption performance[J].Journal of Environmental Sciences,2017,57:418-428. |
20 | GAO Wanlin, ZHOU Tuantuan, LOUIS B,et al.Hydrothermal fabrication of high specific surface area mesoporous MgO with excellent CO2 adsorption potential at intermediate temperatures[J].Catalysts,2017,7:116. |
21 | TAN Chang, GUO Yafei, SUN Jian,et al.Structurally improved MgO adsorbents derived from magnesium oxalate precursor for enhanced CO2 capture[J].Fuel,2020,278:118379. |
22 | GUO Yafei, TAN Chang, WANG Peng,et al.Structure-performance relationships of magnesium-based CO2 adsorbents prepared with different methods[J].Chemical Engineering Journal,2020,379:122277. |
23 | ALKADHEM A M, ELGZOLY M A, ONAIZI S A.Novel amine-functionalized magnesium oxide adsorbents for CO2 capture at ambient conditions[J].Journal of Environmental Chemical Engineering,2020,8(4):103968. |
24 | DING Yudong, SONG Gan, ZHU Xun,et al.Synthesizing MgO with a high specific surface for carbon dioxide adsorption[J].RSC Advances,2015,5(39):30929-30935. |
25 | FAN A, GAO Hongjian.Synthesis of MgO nanostructures through simple hydrogen peroxide treatment for carbon capture[J].Process Safety and Environmental Protection,2021,156:361-372. |
26 | YANG Na, NING Ping, LI Kai,et al.MgO-based adsorbent achi-eved from magnesite for CO2 capture in simulate wet flue gas[J].Journal of the Taiwan Institute of Chemical Engineers,2018,86:73-80. |
27 | GUO Yafei, TAN Chang, WANG Peng,et al.Magnesium-based basic mixtures derived from earth-abundant natural minerals for CO2 capture in simulated flue gas[J].Fuel,2019,243:298-305. |
28 | SONG Gan, ZHU Xun, CHEN Rong,et al.Influence of the precursor on the porous structure and CO2 adsorption characteristics of MgO[J].RSC Advances,2016,6(23):19069-19077. |
29 | TUAN V A, LEE Chang ha.Preparation of rod-like MgO by simple precipitation method for CO2 capture at ambient temperature[J].Vietnam Journal of Chemistry,2018,56(2):197-202. |
30 | HO K, JIN S, ZHONG Mianjun,et al.Sorption capacity and stability of mesoporous magnesium oxide in post-combustion CO2 capture[J].Materials Chemistry and Physics,2017,198:154- 161. |
31 | CUI Hongjie, DONG Hang, ZHOU Zhiming.A cadmium-magnesium looping for stable thermochemical energy storage and CO2 capture at intermediate temperatures[J].Chemical Engineering Journal,2021,425:131428. |
32 | CAMPELO J, LUNA D, LUQUE R,et al.Sustainable preparation of supported metal nanoparticles and their applications in catalysis[J].ChemSusChem,2009,2(1):18-45. |
33 | MEIS N N A H, BITTER J H, DE JONG K P.Support and size effects of activated hydrotalcites for precombustion CO2 capture[J].Industrial & Engineering Chemistry Research,2010,49(3):1229-1235. |
34 | BIAN Shaowei, BALTRUSAITIS J, GALHOTRA P,et al.A template-free,thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption[J].Journal of Materials Chemistry,2010,20(39):8705-8710. |
35 | NIU Xiaochen, FENG Yanyan, XU Yonghui,et al.Synthesis of hollow Al-doped MgO spheres via a sacrificial templating me-thod for enhanced CO2 adsorption[J].Journal of Natural Gas Science and Engineering,2021,88:103814. |
36 | RAO Linli, MA Rui, LIU Shenfang,et al.Nitrogen enriched porous carbons from d-glucose with excellent CO2 capture performance[J].Chemical Engineering Journal,2019,362:794- 801. |
37 | LIU Wujun, JIANG Hong, TIAN Ke,et al.Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture[J].Environmental Science & Technology,2013,47(16):9397-9403. |
38 | CREAMER A E, GAO Bin, ZIMMERMAN A,et al.Biomass-facilitated production of activated magnesium oxide nanoparticles with extraordinary CO2 capture capacity[J].Chemical Engineering Journal,2018,334:81-88. |
39 | BORK A H, REKHTINA M, WILLINGER E,et al.Peering into buried interfaces with X-rays and electrons to unveil MgCO3 formation during CO2 capture in molten salt-promoted MgO[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(26):e2103971118. |
40 | LEE H, TRIVIÑO M L T, HWANG S,et al. In situ observation of carbon dioxide capture on pseudo-liquid eutectic mixture-promoted magnesium oxide[J].ACS Applied Materials & Interfaces,2018,10(3):2414-2422. |
41 | ZHANG Keling, LI X S, LI Weizhen,et al.Phase transfer-catalyzed fast CO2 absorption by MgO-based absorbents with high cycling capacity[J].Advanced Materials Interfaces,2014,1(3):1400030. |
42 | WANG Junya, LI Min, LU P,et al.Kinetic study of CO2 capture on ternary nitrates modified MgO with different precursor and mo-rphology[J].Chemical Engineering Journal,2020,392:123752. |
43 | DING Jing, YU Chao, LU Jianfeng,et al.Enhanced CO2 adsorption of MgO with alkali metal nitrates and carbonates[J].Applied Energy,2020,263:114681. |
44 | KWAK J S, KIM K Y, OH K R,et al.Performance enhancement of all-solid CO2 absorbent based on Na2CO3-promoted MgO by using ZrO2 dispersant[J].International Journal of Greenhouse Gas Control,2019,81:38-43. |
45 | LI Lei, WEN Xia, FU Xin,et al.MgO/Al2O3 sorbent for CO2 capture[J].Energy & Fuels,2010,24(10):5773-5780. |
46 | HAN Kunkun, ZHOU Yu, CHUN Yuan,et al.Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature[J].Journal of Hazardous Materials,2012,203/204:341-347. |
47 | GUO Yafei, TAN Chang, SUN Jian,et al.Biomass ash stabilized MgO adsorbents for CO2 capture application[J].Fuel,2020,259:116298. |
48 | GAO Wanlin, ZHOU Tuantuan, GAO Yanshan,et al.Study on MNO3/NO2(M=Li,Na,and K)/MgO composites for intermediate-temperature CO2 capture[J].Energy & Fuels,2019,33(3):1704-1712. |
49 | HWANG B W, LIM J H, CHAE H J,et al.CO2 capture and regeneration properties of MgO-based sorbents promoted with alkali metal nitrates at high pressure for the sorption enhanced water gas shift process[J].Process Safety and Environmental Protection,2018,116:219-227. |
50 | ZHAO Xiao, JI Guozhao, LIU Wen,et al.Mesoporous MgO promoted with NaNO3/NaNO2 for rapid and high-capacity CO2 capture at moderate temperatures[J].Chemical Engineering Journal,2018,332:216-226. |
51 | HARADA T, HATTON T A.Colloidal nanoclusters of MgO coated with alkali metal nitrates/nitrites for rapid,high capacity CO2 capture at moderate temperature[J].Chemistry of Materials,2015,27(23):8153-8161. |
[1] | WANG Minrui, TIAN Guiying, ZHANG Ao, GE Junjie, ZHANG Lei, XIANG Jun, TANG Na. Study on granulation optimization for Al-based lithium adsorbent and its lithium recovery performance from brine [J]. Inorganic Chemicals Industry, 2025, 57(3): 36-42. |
[2] | SHEN Xiaoqian, ZHOU Fei, LIU Wanchen, XU Lu, WU Junshu. Study on synthesis of FeS modified calcium silicate hydrate composites and their total Cr removal performance [J]. Inorganic Chemicals Industry, 2025, 57(2): 57-67. |
[3] | YAN Xin, LIU Hailu, LIU Baolin, LIU Yi, LIU Yanyang. Research on key technologies and mechanisms of green nano calcium carbonate production [J]. Inorganic Chemicals Industry, 2025, 57(1): 71-76. |
[4] | PEI Xiaogang, ZHANG Peng, DONG Shanshan, GE Shanshan, ZHAO Yuelong. Hydroxyapatite composite humic acid and its removal of Mn(Ⅱ) [J]. Inorganic Chemicals Industry, 2024, 56(5): 70-77. |
[5] | ZHAN Sijin, LIU Shike, LIU Fei, YAO Mengqin, CAO Jianxin. Study on preparation and catalytic performance of ZnO-CeO2 [J]. Inorganic Chemicals Industry, 2024, 56(3): 137-143. |
[6] | REN Qixia, YANG Kun, LIU Fei, YAO Mengqin, CAO Jianxin. Effect of promoter on physicochemical properties and catalytic performance of ZnO/ZrO2 [J]. Inorganic Chemicals Industry, 2024, 56(3): 144-154. |
[7] | ZHAO Chuang, CHEN Zihao, ZHANG Boyu, LI Ben, JIN Fengying, LI Bin, SUN Zhenhai, GUO Chunlei. Study on adsorption and separation performance of molecular sieve adsorbents for different types of diesel [J]. Inorganic Chemicals Industry, 2024, 56(3): 80-85. |
[8] | YANG Kun, REN Qixia, DONG Yonggang, LIU Fei, YAO Mengqin, CAO Jianxin. Effect of calcination temperature on catalytic performance of ZnGaZrO x /SAPO-34 [J]. Inorganic Chemicals Industry, 2024, 56(2): 136-145. |
[9] | LI Yang, LOU Feijian, SUI Xin, LI Keyan, LIU Fei, GUO Xinwen. Preparation of amine-functionalized fumed SiO2 materials and their performance for CO2 adsorption [J]. Inorganic Chemicals Industry, 2024, 56(2): 38-43. |
[10] | LIU Fujie, HE Qian, SU Long, JIANG Caiyun. Adsorption properties of methylene blue by surface functionalized magnetic biochar with sodium alginate [J]. Inorganic Chemicals Industry, 2024, 56(2): 65-73. |
[11] | LU Yunkun, TANG Xianyou, YIN Hang, ZHANG Yanan, ZHANG Shaojie. Study on surface packaging and leakage prevention of high temperature molten salt/ceramic composite phase change thermal storage materials [J]. Inorganic Chemicals Industry, 2024, 56(2): 80-85. |
[12] | WANG Ruirui, ZHU Chaoliang, MU Bing, MA Wanxia, FAN Jie, XU Guowang, SHI Yifei, DENG Xiaochuan, QING Binju. Preparation of cubic manganese carbonate by hydrothermal method and its application in extraction of lithium [J]. Inorganic Chemicals Industry, 2024, 56(12): 94-103. |
[13] | HOU Zhanggui, WU Chongchong, ZHANG Siran. Research progress of CO2 conversion via Reverse Water-Gas Shift reaction [J]. Inorganic Chemicals Industry, 2024, 56(11): 105-115. |
[14] | FENG Qing, WANG Yansu, ZHOU Wei, LIU Yang, SUN Yanmin, NAN Jun. Research progress on catalysts for relay-catalysis of CO2 to prepare high value-added chemicals [J]. Inorganic Chemicals Industry, 2024, 56(11): 81-94. |
[15] | WANG Hangyu, DU Yifa, GUO Xia, NA Yuxuan, WAN Macuo, ZHOU Yongquan. Study on preparation of NiCo Prussian blue analogue hollow nanobubbles and their Cs+ adsorption properties [J]. Inorganic Chemicals Industry, 2024, 56(10): 55-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297