Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (1): 44-49.doi: 10.11962/1006-4990.2020-0133
Previous Articles Next Articles
Fan Qingke1(),Meng Qinghua2,Luo Fengyu3
Received:
2020-07-19
Online:
2021-01-10
Published:
2021-01-08
CLC Number:
Fan Qingke,Meng Qinghua,Luo Fengyu. Study on preparation and properties of cathode materials for vehicle lithium battery[J]. Inorganic Chemicals Industry, 2021, 53(1): 44-49.
[1] | 沈炎宾, 陈立桅. 高能量密度动力电池材料电化学[J]. 科学通报, 2020,65(Z1):117-126. |
[2] | Fan L, Wei S, Li S, et al. Recent progress of the solid-state electroly-tes for high-energy metal-based batteries[J]. Advanced Energy Ma-terials, 2018,8(11):1-31. |
[3] | 罗成果, 肖俊, 范广新. 锂离子电池正极材料LiMn2O4用前驱体的现状与发展[J]. 无机盐工业, 2020,52(1):26-29. |
[4] |
Umeshbabu E, Zheng B, Yang Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electroly-tes[J]. Electrochemical Energy Reviews, 2019,2(2):199-230.
doi: 10.1007/s41918-019-00029-3 |
[5] |
Takada K, Ohta N, Tateyama Y. Recent progress in interfacial nano-architectonics in solid-state batteries[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2015,25(2):205-213.
doi: 10.1007/s10904-014-0127-8 |
[6] |
Kazunori Takada. Progress in solid electrolytes toward realizing solid-state lithium batteries[J]. Journal of Power Sources, 2018,394:74-85.
doi: 10.1016/j.jpowsour.2018.05.003 |
[7] |
Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2017,8(8):1702397.
doi: 10.1002/aenm.v8.8 |
[8] | 李文明, 邱茂琴, 杨则恒, 等. 共沉淀法制备锂离子电池0.5Li2MnO3·0.5LiCo0.5Mn0.5O2富锂锰基正极材料[J]. 硅酸盐学报, 2020,48(2):174-181. |
[9] | 李艳萍, 闫东伟, 周少雄, 等. 锂离子电池富锂锰基氧化物正极材料的制备及其性能[J]. 材料科学与工程学报, 2019,37(6):884-888,927. |
[10] | Zhang H M, Guo C, Nuli Y, et al. Solid-state electrolytes for lithium-sulfur batteries[J]. Transactions of Nanjing University of Aeronau-tics and Astronautics, 2018,35(4):5-17. |
[11] | 张雨薇, 刘成龙, 徐志江. 新能源汽车锂电池富锂锰基正极材料掺杂改性[J]. 电源技术, 2019,43(10):1596-1600. |
[12] |
Chen D, Yu Q, Xiang X, et al. Porous layered lithium-rich oxide nanorods:Synjournal and performances as cathode of lithium ion battery[J]. Electrochimica Acta, 2015,154:83-93.
doi: 10.1016/j.electacta.2014.12.037 |
[13] | 封平净, 卢鹏, 刘耀春, 等. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019,33(S1):50-52. |
[14] |
Chen M, Xiang X, Chen D, et al. Polyethylene glycol-assisted synt-hesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery[J]. Journal of Power Sources, 2015,279:197-204.
doi: 10.1016/j.jpowsour.2015.01.004 |
[15] | 陈婧妍, 忽小宇, 吕晓霞, 等. 基于Co比例变化的富锂锰基正极材料性能研究[J]. 化工新型材料, 2019,47(S1):129-133. |
[16] |
Wu J F, Guo X. Nanostructured metal-organic framework(MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries[J]. Small, 2019,15(27):1902429.
doi: 10.1002/smll.v15.27 |
[17] | 杨金戈, 李宇杰, 陆地, 等. 微纳结构富锂锰基层状正极材料的形貌调控与储锂性能[J]. 高等学校化学学报, 2019,40(7):1495-1500. |
[18] | Oh D Y, Nam Y J, Park K H, et al. Excellent compatibility of solv-ate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries[J]. Advanced Energy Materials, 2015,5(22):396-400. |
[19] | 徐金鹏, 江靖雯, 黄海富, 等. 超声辅助共沉淀法制备富锂锰基正极材料[J]. 稀有金属材料与工程, 2019,48(10):3359-3365. |
[20] |
Unemoto A, Ogawa H, Gambe Y, et al. Development of lithium-sul-fur batteries using room temperature ionic liquid-based quasi-so-lid-state electrolytes[J]. Electrochimica Acta, 2014,125:386-394.
doi: 10.1016/j.electacta.2014.01.105 |
[21] |
Nagata H, Chikusa Y. An all-solid-state lithium-sulfur battery us-ing two solid electrolytes having different functions[J]. Journal of Power Sources, 2016,329(15):268-272.
doi: 10.1016/j.jpowsour.2016.08.058 |
[22] | Yao X, Huang N, Han F, et al. High-performance all-solid-state li-thium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017,7(17):1-9. |
[23] | 杨凯, 耿萌萌, 叶俊, 等. 富锂材料Li1.2Mn0.54Ni0.13Co0.13O2的Mo掺杂及电化学性能研究[J]. 电子元件与材料, 2019,38(3):7-15. |
[24] | 王策, 王俊, 陈彦彬, 等. 富锂锰基正极材料Li(1.2-x)NaxNi0.13Co0.13Mn0.54O2的制备及电化学性能[J]. 材料与冶金学报, 2019,18(4):300-304. |
[25] |
Tao X, Liu Y, Liu W, et al. Solid-state lithium-sulfur batteries op-erated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/Car-bon foam and polymer[J]. Nano Letters, 2017,17(5):2967-2972.
doi: 10.1021/acs.nanolett.7b00221 pmid: 28388080 |
[26] | 王征荣, 张海朗. 过锂量对富锂锰基正极材料Li(1.2+x)Ni0.1Co0.2Mn0.5O2结构与电化学性能的影响[J]. 稀有金属材料与工程, 2019,48(3):941-946. |
[27] | Nakazawa T, Ikoma A, Kido R, et al. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries[J]. Journal of Po-wer Sources, 2016,307(1):746-752. |
[28] |
D′Angelo A J, Panzer M J. The design of stretchable and self-hea-ling gel electrolytes via fully-zwitterionic polymer networks in sol-vate ionic liquids for Li-based batteries[J]. Chemistry of Materials, 2019,31(8):2913-2922.
doi: 10.1021/acs.chemmater.9b00172 |
[1] | MA Jingyuan, LI Yan, ZHOU Hanjie, LI Jiangang. Research progress of PEO based organic/inorganic composite solid electrolyte [J]. Inorganic Chemicals Industry, 2025, 57(3): 1-8. |
[2] | SHI Yunpeng, GUO Ze, ZHANG Hanquan, LU Manman. Study on treatment of ammonia nitrogen wastewater by roasted phosphorus tailings [J]. Inorganic Chemicals Industry, 2025, 57(3): 94-100. |
[3] | JIANG Minghui, ZHANG Liqing, PANG Meijing, LIU Chao. Research progress of ion channels for achieving monovalent cation sieving [J]. Inorganic Chemicals Industry, 2025, 57(3): 9-17. |
[4] | YANG Fu, XIE Yulong. Study on preparation and Na+ doping modification of ternary material LiNi0.65Co0.15Mn0.2O2 [J]. Inorganic Chemicals Industry, 2025, 57(3): 43-49. |
[5] | WANG You, LIAO Lianzhen, CHEN Zheng, GAO Youjun. Effect of surfactants on electrocrystallization of Ni(OH)2 [J]. Inorganic Chemicals Industry, 2025, 57(3): 58-63. |
[6] | SONG Jiaxi, JI Renfei, CHEN Jun, LIN Sen, YU Jianguo. Research on characteristics analysis and pretreatment on deeply deactivated power battery ternary cathode materials [J]. Inorganic Chemicals Industry, 2025, 57(2): 44-49. |
[7] | SHEN Xiaoqian, ZHOU Fei, LIU Wanchen, XU Lu, WU Junshu. Study on synthesis of FeS modified calcium silicate hydrate composites and their total Cr removal performance [J]. Inorganic Chemicals Industry, 2025, 57(2): 57-67. |
[8] | ZHANG Jinjun, GUO Linlin, MIAO Chengpeng, LI Xingyu, PANG Yaheng, YANG Rongkai, YU Yasen. Study on preparation of spherical calcium carbonate for coating fillers based on carbide slag as raw materials [J]. Inorganic Chemicals Industry, 2025, 57(2): 113-119. |
[9] | HUANG Tianyin, SUN Ling, ZHAO Qinzheng, CHEN Xin, SONG Xiaojie, WU Bingdang. Study on performance and mechanism of titanium salt coagulant for treatment of oily wastewater [J]. Inorganic Chemicals Industry, 2025, 57(2): 68-75. |
[10] | WU Wei, XU Cuiping, ZHAO Qinzheng, YANG Jingjing, XU Xiaoyi, HUANG Tianyin, WU Bingdang. Study on coagulation performance and residual aluminum forms of aluminum salt coagulants for surface water [J]. Inorganic Chemicals Industry, 2025, 57(1): 42-50. |
[11] | TANG Kaijing, LIU Chuanbei, LI Yingding, JIANG Yong, WU Junnan, ZHANG Tao. Research on preparation and mechanism of superhydrophobic phosphogypsum products [J]. Inorganic Chemicals Industry, 2025, 57(1): 97-102. |
[12] | LIU Guangming. Study on photocatalytic and mechanical properties of C3N5/NH2-MIL-125(Ti) modified concrete mortar [J]. Inorganic Chemicals Industry, 2025, 57(1): 120-128. |
[13] | ZHANG Yanyan, LI Donghong, LIU Yonghe, ZHANG Yang, KANG Le, WANG Yi. Study on surface treatment of alumina filler [J]. Inorganic Chemicals Industry, 2025, 57(1): 77-82. |
[14] | TIAN Peng, ZHANG Haoran, XU Jingang, MOU Chenxi, XU Qianjin, NING Guiling. Study on aluminum sol modified anode and cathode materials for lithium ion batteries [J]. Inorganic Chemicals Industry, 2024, 56(9): 44-53. |
[15] | GAN Yonghai, DING Xinhe, DING Chengcheng, LUO Jun, XU Bin, KONG Ming, SONG Xiaojie, CUI Yibin. A comprehensive review of molybdenum removal by coagulation in water treatment [J]. Inorganic Chemicals Industry, 2024, 56(9): 24-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297