Inorganic Chemicals Industry ›› 2025, Vol. 57 ›› Issue (3): 9-17.doi: 10.19964/j.issn.1006-4990.2024-0353
• Reviews and Special Topics • Previous Articles Next Articles
JIANG Minghui1(), ZHANG Liqing1(
), PANG Meijing1, LIU Chao2
Received:
2024-06-21
Online:
2025-03-10
Published:
2024-07-13
Contact:
ZHANG Liqing
E-mail:576655480@qq.com;ceazhanglq@ujn.edu.cn
CLC Number:
JIANG Minghui, ZHANG Liqing, PANG Meijing, LIU Chao. Research progress of ion channels for achieving monovalent cation sieving[J]. Inorganic Chemicals Industry, 2025, 57(3): 9-17.
Table 1
Ionic radius (r),effective hydration radius (r0),molar Gibbs hydration energy(ΔGhyd),and diffusion coefficient(D, infinitely diluted at 25 ℃) of common monovalent cations"
离子 | r/nm | r0/nm | ΔGhyd(kJ·mol-1) | D/(10-9 m2·s-1) |
---|---|---|---|---|
Li+ | 0.060 | 0.382 | -475 | 1.029 |
Na+ | 0.095 | 0.358 | -430 | 1.334 |
K+ | 0.133 | 0.331 | -295 | 1.957 |
Rb+ | 0.148 | 0.329 | -275 | 2.072 |
Cs+ | 0.169 | 0.329 | -250 | 2.056 |
Ag+ | 0.126 | 0.341 | -430 | 1.648 |
Table 2
Comparison of ion channel membranes reported in literature"
名称 | 孔径/ nm | 离子分离比 | 运输速率/ (mol·m-2·h-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
n(Li+)/ n(K+) | n(Li+)/ n(Na+) | n(Li+)/ n(Rb+) | n(Na+)/ n (K+) | n(Na+)/ n(Li+) | n(K+)/ n(Na+) | n(K+)/ n(Li+) | |||
4CO石墨烯纳米孔[ | 0.43~0.79 | 2~3 | |||||||
PPD交联氧化石墨烯[ | 0.34~0.40 | 1.5 | 0.09 | ||||||
ZIF-8/GO/AAO膜[ | 0.34 | 2.2* | 1.4* | 4.6* | 1.6* | ||||
uio-66[ | 0.60 | 1.8* | |||||||
PSS@HKUST-1[ | 0.67 | 67 | 35 | 6.75 | |||||
聚砜(PSf)支撑石墨烯复合膜[ | 0.60~0.70 | 2.61 | 0.66×10-3 | ||||||
prGO-PNB膜[ | 3.1* | ||||||||
吡啶/氧代唑啉的螺旋折叠体离子通道[ | 0.30 | 16.3* | |||||||
MXene珍珠母结构IGM膜[ | 4.78 | 2.52 | 1.02 | ||||||
DA18C6多孔冠醚晶体[ | 0.26 | 15 | 11.5 | ||||||
多孔晶体有机磺酸-氨基盐(CPOS)[ | 0.60 | 31 | 363 | 94.4×10-3 | |||||
TpPa-PO3H2 COF膜[ | 0.70 | 4.2~4.7 | 0.2 | ||||||
苯丙氨酸基团连接15冠5单元[ | 20.1 | ||||||||
15C5-MOFSNC[ | 0.50 | 360.1 | 1 770.0 | 2.87×10-3 | |||||
LCMM[ | 0.60 | 49 | 45 | 59 | 0.35 | ||||
亚纳米孔PEI膜[ | 0.30~0.11 | 6 | 0.412 |
Table 3
Comparison of different materials"
材料 类型 | 分离机理 | 化学稳定性 | 力学性能 | 经济性 | 功能性 |
---|---|---|---|---|---|
石墨烯 | 尺寸筛分 | 高 | 强度高,韧性和拉伸强度好 | 较高 | 较低,缺少活性位点 |
GO | 尺寸筛分 | 良好 | 脆,力学性能不足 | 较高 | 表面富含的各种含氧基团,可表面改性,调节性能 |
MOF | 尺寸筛分,表面电荷,能量势垒,化学选择性 | 依赖于具体材料 | 水中易溶胀,因通常具有高孔隙率,强度较低 | 中等 | 具有高孔隙率,易于官能化,可调孔径 |
冠醚 | 尺寸筛分,能量势垒,分子识别与离子络合 | 良好,但与强酸性物质可能发生化学反应 | 依赖于具体材料 | 中等 | 可调节环结构 |
MXene | 尺寸筛分,能量势垒 | 良好 | 具有很高的物理强度和良好的弹性 | 中等 | 具有丰富的表面官能团,可以进行各种化学修饰 |
聚合物 | 尺寸筛分,能量势垒,表面电荷 | 良好,但某些条件下(如高温、强酸强碱)不稳定 | 依赖于具体材料 | 高 | 可进行改性,易于加工和成型 |
COF | 尺寸筛分,表面电荷 | 高 | 高,具有刚性 | 中等 | 易于官能化,可调孔径 |
1 | SWAIN B.Recovery and recycling of lithium:A review[J].Separation and Purification Technology,2017,172:388-403. |
2 | RAZMJOU A, ASADNIA M, HOSSEINI E,et al.Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J].Nature Communications,2019,10(1):5793. |
3 | 张宝,梁祯,张雁南,等.废旧锂离子电池正极材料回收研究进展[J].中国材料进展,2024,43(5):380-391,407. |
ZHANG Bao, LIANG Zhen, ZHANG Yannan,et al.Research progress on cathode material recycling of waste lithium-ion batteries[J].Materials China,2024,43(5):380-391,407. | |
4 | LANG Jialiang, JIN Yang, LIU Kai,et al.High-purity electrolytic lithium obtained from low-purity sources using solid electrolyte[J].Nature Sustainability,2020,3:386-390. |
5 | TANG Chao, BRUENING M L.Ion separations with membranes[J].Journal of Polymer Science,2020,58(20):2831-2856. |
6 | LU Jun, ZHANG Huacheng, HOU Jue,et al.Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks[J].Nature Materials,2020,19(7):767-774. |
7 | ZHANG Huacheng, HOU Jue, HU Yaoxin,et al.Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J].Science Advances,2018,4(2):eaaq0066. |
8 | CHENG Yaxiong, DONG Yuhua, HUANG Qinggang,et al.Ionic transport and sieving properties of sub-nanoporous polymer membranes with tunable channel size[J].ACS Applied Materials & Interfaces,2021,13(7):9015-9026. |
9 | SUN Zhanhu, BARBOIU M, LEGRAND Y M,et al.Highly selective artificial cholesteryl crown ether K+-channels[J].Angewandte Chemie,2015,127(48):14681-14685. |
10 | FONSECA J, GONG Tenghua, JIAO Li,et al.Metal-organic frameworks(MOFs) beyond crystallinity:Amorphous MOFs,MOF liquids and MOF glasses[J].Journal of Materials Chemistry A,2021,9(17):10562-10611. |
11 | O′SHAUGHNESSY M, GLOVER J, HAFIZI R,et al.Porous isoreticular non-metal organic frameworks[J].Nature,2024,630(8015):102-108. |
12 | ZHAO Wanling, DENG Jinqiong, REN Yan,et al.Antibacterial application and toxicity of metal-organic frameworks[J].Nanotoxicology,2021,15(3):311-330. |
13 | HOU Jue, ZHANG Huacheng, SIMON G P,et al.Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions[J].Advanced Materials,2020,32(18):e1902009. |
14 | KOROTCENKOV G, TOLSTOY V P.Current trends in nanomaterials for metal oxide-based conductometric gas sensors:Advantages and limitations-part 2:Porous 2D nanomaterials[J].Nanomaterials,2023,13(2):237. |
15 | QIU Hu, ZHOU Wanqi, GUO Wanlin.Nanopores in graphene and other 2D materials:A decade′s journey toward sequencing[J].ACS Nano,2021,15(12):18848-18864. |
16 | ZHANG Huacheng, LI Xingya, HOU Jue,et al.Angstrom-scale ion channels towards single-ion selectivity[J].Chemical Society Reviews,2022,51(6):2224-2254. |
17 | BROWN E E B, WOLTORNIST S J, ADAMSON D H.PolyHIPE foams from pristine graphene:Strong,porous,and electrically conductive materials templated by a 2D surfactant[J].Journal of Colloid and Interface Science,2020,580:700-708. |
18 | BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V.Structural defects in graphene[J].ACS Nano,2011,5(1):26-41. |
19 | HUMPLIK T, LEE J, O′HERN S C,et al.Nanostructured materials for water desalination[J].Nanotechnology,2011,22(29):292001. |
20 | HE Zhongjin, ZHOU Jian, LU Xiaohua,et al.Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+ [J].ACS Nano,2013,7(11):10148-10157. |
21 | LI Siying, LEE J H, HU Qicheng,et al.Scalable graphene composite membranes for enhanced ion selectivity[J].Journal of Membrane Science,2018,564:159-165. |
22 | 白露,王敏,杨红军,等.氧化石墨烯改性聚酰胺膜研究进展[J].无机盐工业,2021,53(10):15-21. |
BAI Lu, WANG Min, YANG Hongjun,et al.Research progress of graphene oxide modified polyamide membrane[J].Inorganic Chemicals Industry,2021,53(10):15-21. | |
23 | JIA Zhiqian, WANG Yan, SHI Weixing,et al.Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation[J].Journal of Membrane Science,2016,520:139-144. |
24 | HU Jiaqi, LIU Zhuang, DENG Ke,et al.A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions[J].Journal of Membrane Science,2019,591:117345. |
25 | KITCHAMSETTI N, CHO J S.A roadmap of MOFs derived porous carbon,oxides,chalcogenides,and phosphides of metals:Synthesis,properties,parameter modulation and their utilization as an electrode for Li/Na/K-ion batteries[J].Journal of Energy Storage,2024,84:110947. |
26 | 陈心怡,张华,方伟,等.金属有机框架材料在天然气纯化和存储领域的应用[J].无机盐工业,2023,55(4):13-19. |
CHEN Xinyi, ZHANG Hua, FANG Wei,et al.Application of metal-organic frameworks in fields of natural gas purification and storage[J].Inorganic Chemicals Industry,2023,55(4):13-19. | |
27 | GUPTA K M, QIAO Zhiwei, ZHANG Kang,et al.Seawater pervaporation through zeolitic imidazolate framework membranes:Atomistic simulation study[J].ACS Applied Materials & Interfaces,2016,8(21):13392-13399. |
28 | SHAHID M U, NAJAM T, ISLAM M,et al.Engineering of metal organic framework(MOF) membrane for waste water treatment:Synthesis,applications and future challenges[J].Journal of Water Process Engineering,2024,57:104676. |
29 | KUAN A T, LU Bo, XIE Ping,et al.Electrical pulse fabrication of graphene nanopores in electrolyte solution[J].Applied Physics Letters,2015,106(20):203109. |
30 | HUA Weikang, ZHANG Tonghui, WANG Min,et al.Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of Terbium(Ⅲ) and Europium(Ⅲ) ions and their photoluminescence performances[J].Chemical Engineering Journal,2019,370:729-741. |
31 | RAMASWAMY P, WONG N E, GELFAND B S,et al.A water stable magnesium MOF that conducts protons over 10(-2) S cm (-1)[J].Journal of the American Chemical Society,2015,137(24):7640-7643. |
32 | LI Jianrong, SCULLEY J, ZHOU Hongcai.Metal-organic frameworks for separations[J].Chemical Reviews,2012,112(2):869-932. |
33 | GUO Yi, YING Yulong, MAO Yiyin,et al.Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J].Angewandte Chemie(International Ed),2016,55(48):15120-15124. |
34 | GOKEL G W, LEEVY W M, WEBER M E.Crown ethers:Sensors for ions and molecular scaffolds for materials and biological models[J].Chemical Reviews,2004,104(5):2723-2750. |
35 | PEDERSEN C J.Cyclic polyethers and their complexes with metal salts[J].Journal of the American Chemical Society,1967,89(26):7017-7036. |
36 | FROMM K M, BERGOUGNANT R D, ROBIN A Y.Di-benzo-18-crown-6 and its derivatives as ligands in the search for ion channels[J].Zeitschrift Für Anorganische und Allgemeine Chemie,2006,632(5):828-836. |
37 | 艾欣,董琪,豆叶帆,等.冠醚功能化改性及其对金属离子分离研究进展[J].无机盐工业,2024,56(6):14-25. |
AI Xin, DONG Qi, DOU Yefan,et al.Research progress of functionalization and modification of crown ether and its application in metal ion separation[J].Inorganic Chemicals Industry,2024,56(6):14-25. | |
38 | FROMM K M, BERGOUGNANT R D.Transport properties of solid state crown ether channel systems[J].Solid State Sciences,2007,9(7):580-587. |
39 | YE Tingyan, HOU Gaolei, LI Wen,et al.Artificial sodium-selective ionic device based on crown-ether crystals with subnanometer pores[J].Nature Communications,2021,12(1):5231. |
40 | JIN Lei, SUN Chang, LI Zhongyan,et al.A K+-selective channel with a record-high K+/Na+selectivity of 20.1[J].Chemical Communications,2023,59(24):3610-3613. |
41 | LU Jun, JIANG Gengping, ZHANG Huacheng,et al.An artificial sodium-selective subnanochannel[J].Science Advances,2023,9(4):eabq1369. |
42 | NAGUIB M, MOCHALIN V N, BARSOUM M W,et al.25th anniversary article:MXenes:A new family of two-dimensional materials[J].Advanced Materials,2014,26(7):992-1005. |
43 | NAGUIB M, KURTOGLU M, PRESSER V,et al.Two-dimensional nanocrystals:Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2(adv.mater.37/2011)[J].Advanced Materials,2011,23(37):4207. |
44 | ANASORI B, LUKATSKAYA M R, GOGOTSI Y.2D metal carbides and nitrides(MXenes) for energy storage[J].Nature Reviews Materials,2017,2(2):16098. |
45 | DING Li, LI Libo, LIU Yanchang,et al.Effective ion sieving with Ti3C2T x MXene membranes for production of drinking water from seawater[J].Nature Sustainability,2020,3:296-302. |
46 | HUANG Lingzhi, WU Haoyu, DING Li,et al.Shearing liquid-crystalline MXene into lamellar membranes with super-aligned nanochannels for ion sieving[J].Angewandte Chemie(International Ed),2024,63(6):e202314638. |
47 | XIN Weiwen, LIN Chao, FU Lin,et al.Nacre-like mechanically robust heterojunction for lithium-ion extraction[J].Matter,2021,4(2):737-754. |
48 | WANG Pengfei, WANG Mao, LIU Feng,et al.Ultrafast ion sieving using nanoporous polymeric membranes[J].Nature Communications,2018,9(1):569. |
49 | GUO Zaichao, LI Fujin, WU Xuanxuan,et al.Efficient ion sieving and ion transport properties in sub-nanoporous polyetherimide membranes[J].Desalination,2024,573:117192. |
50 | XIN Weiwen, FU Jingru, QIAN Yongchao,et al.Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving[J].Nature Communications,2022,13(1):1701. |
51 | WANG Hongjian, ZHAI Yeming, LI Yang,et al.Covalent organic framework membranes for efficient separation of monovalent cations[J].Nature Communications,2022,13(1):7123. |
52 | CHEN Feng, SHEN Jie, LI Ning,et al.Pyridine/oxadiazole-based helical foldamer ion channels with exceptionally high K+/Na+ selectivity[J].Angewandte Chemie(International Ed),2020,59(4):1440-1444. |
[1] | LIN Yuqing,ZHANG Yiren,QIU Yulong,ZHANG Jiayu,YU Jianguo. Progress and prospect of membrane technology in lithium extraction from salt lake brine [J]. Inorganic Chemicals Industry, 2023, 55(1): 33-45. |
[2] | XU Xiaobing,LI Xu,YANG Xu,XU Xiaoyong. Effect of firing temperature on properties of MgO-TiO2 composite inorganic ceramic microfilter membrane support [J]. Inorganic Chemicals Industry, 2022, 54(8): 85-89. |
[3] | Peng Wenbo,Yun Jianjun,Ding Bangchao,Bai Zuguo,Xiao Weiyi,Wang Xiaohu. Study on membrane integration technology in treatment of wastewater from chlorinated titanium dioxide [J]. Inorganic Chemicals Industry, 2020, 52(6): 76-79. |
[4] | Li Xinwang,Gu Xiaojuan,Zuo Dahai,Yang Shuxiong,Peng Kangming. Pilot study of ceramic ultrafiltration membrane for qualified lithium-extraction solution from salt lake brine [J]. Inorganic Chemicals Industry, 2020, 52(4): 61-64. |
[5] | Cheng Qi,Meng Yongtao,Bi Qiuyan,Ma Li,Guan Yunshan. Screening of nanofiltration membrane for separation of magnesium and lithium [J]. Inorganic Chemicals Industry, 2020, 52(4): 42-48. |
[6] | GUO Shu-Fen, ZHOU Jun-Bo, PAN Sheng. Study on treatment process of mother liquor in sodium chlorate industry [J]. INORGANICCHEMICALSINDUSTRY, 2012, 44(10): 37-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297