无机盐工业 ›› 2025, Vol. 57 ›› Issue (12): 8-17.doi: 10.19964/j.issn.1006-4990.2025-0017
于广欣1(
), 朱诗怡2, 周铭浩2, 吴洪2(
), 陈赞3, 纪钦洪1, 姜忠义2(
)
收稿日期:2025-01-06
出版日期:2025-12-10
发布日期:2025-06-13
通讯作者:
吴洪,教授,博士生导师,主要研究方向为膜材料;E-mail:wuhong@tju.edu.cn。作者简介:于广欣(1966— ),硕士,高工,主要研究方向为石油化工、氢能、储能、生物质能技术研究;E-mail:yugx2@cnooc.com。
基金资助:
YU Guangxin1(
), ZHU Shiyi2, ZHOU Minghao2, WU Hong2(
), CHEN Zan3, JI Qinhong1, JIANG Zhongyi2(
)
Received:2025-01-06
Published:2025-12-10
Online:2025-06-13
摘要:
氢能产业已成为全球能源转型的重要战略,为实现大规模、远距离和低成本氢能转运,利用天然气管网进行氢气混合输送具备规模化应用的可行性;但掺氢天然气中氢气含量通常较低,应用前需将氢气与天然气进行分离。电化学氢泵技术是以电为驱动力,以膜为质子传导和气体阻隔介质的氢气提纯与压缩技术,具有高选择性和氢源适应性,可同时实现氢气提纯与压缩,是掺氢输送并对接应用端的有效途径。对比氢气分离提纯的常用方法,主要介绍电化学氢泵的工作原理、主要功能、关键部件及其研究进展。重点分析核心部件的质子交换膜的研究进展,主要包括聚合物质子交换膜和混合基质型质子交换膜。对电化学氢泵用于掺氢天然气分离的前景和挑战进行展望。
中图分类号:
于广欣, 朱诗怡, 周铭浩, 吴洪, 陈赞, 纪钦洪, 姜忠义. 电化学氢泵用于掺氢天然气氢气纯化与压缩研究进展[J]. 无机盐工业, 2025, 57(12): 8-17.
YU Guangxin, ZHU Shiyi, ZHOU Minghao, WU Hong, CHEN Zan, JI Qinhong, JIANG Zhongyi. Research progress on electrochemical hydrogen pump technology for hydrogen purification and compression of hydrogen doped natural gas[J]. Inorganic Chemicals Industry, 2025, 57(12): 8-17.
| [1] | 国家能源局.氢能产业发展中长期规划(2021-2035年)[R/OL].(2022-03-23)[2024-09-13]. |
| [2] | 中华人民共和国国家发展和改革委员会.天然气利用管理办法[R/OL].(2024-06-03)[2024-09-13]. |
| [3] | 于广欣,纪钦洪,徐庆虎,等.电化学氢纯化与压缩技术现状及在氢能中的应用[J].现代化工,2023,43(5):6-10. |
| YU Guangxin, JI Qinhong, XU Qinghu,et al.Status and application of electrochemical hydrogen purification and compression technologies[J].Modern Chemical Industry,2023,43(5):6-10. | |
| [4] | ZHANG Donghui, KODAMA A, GOTO M,et al.Recovery of trace hydrogen by cryogenic adsorption[J].Separation and Purification Technology,2004,35(2):105-112. |
| [5] | 张钢强,孙朋涛,刘书缘,等.变压吸附制氢的研究进展[J].石油化工,2022,51(4):498-502. |
| ZHANG Gangqiang, SUN Pengtao, LIU Shuyuan,et al.Research progress of hydrogen production by pressure swing adsorption[J].Petrochemical Technology,2022,51(4):498-502. | |
| [6] | AL-MUFACHI N A, REES N V, STEINBERGER-WILKENS R.Hydrogen selective membranes:A review of palladium-based dense metal membranes[J].Renewable and Sustainable Energy Reviews,2015,47:540-551. |
| [7] | AHN S J, TAKAGAKI A, SUGAWARA T,et al.Permeation properties of silica-zirconia composite membranes supported on porous alumina substrates[J].Journal of Membrane Science,2017,526:409-416. |
| [8] | 谭遥,李琦,王捷,等.掺氢天然气分离工艺方案及经济性分析[J].石油与天然气化工,2023,52(4):41-47. |
| TAN Yao, LI Qi, WANG Jie,et al.Scheme and economic analysis of hydrogen-blended natural gas separation[J].Chemical Engineering of Oil & Gas,2023,52(4):41-47. | |
| [9] | NAYEBOSSADRI S, SPEIGHT J D, BOOK D.Hydrogen separation from blended natural gas and hydrogen by Pd-based membran-es[J].International Journal of Hydrogen Energy,2019,44(55):29092-29099. |
| [10] | NIU Xinpu, MORIYAMA N, NAGASAWA H,et al.Rational design of defect-free carbon-silica-zirconia ceramic membrane derived from crosslinked organic structure for highly efficient gas separation[J].Journal of Membrane Science,2024,709:123112. |
| [11] | ROBESON L M.The upper bound revisited[J].Journal of Membrane Science,2008,320(1/2):390-400. |
| [12] | ZOU Jiexin, HAN Ning, YAN Jiangyan,et al.Electrochemical compression technologies for high-pressure hydrogen:Current status,challenges and perspective[J].Electrochemical Energy Reviews,2020,3(4):690-729. |
| [13] | ARUNAGIRI K, TURSSLINE J M, ARGES C G.Purifying hydrogen from dilute hydrogen-natural gas mixtures using HT-PEM electrochemical hydrogen pumps[J].ACS Energy Letters,2024,9(6):2912-2919. |
| [14] | ZONG Huajian, CHENG Andi, WANG Hao,et al.Multi-objective optimization of a hydrogen production process for polymer membrane coupled with electrochemical hydrogen pump from hydro-gen-doped natural gas by NSGA-Ⅱ[J].Separation and Purification Technology,2024,349:127821. |
| [15] | JACKSON C, SMITH G, KUCERNAK A R.Deblending and purification of hydrogen from natural gas mixtures using the electrochemical hydrogen pump[J].International Journal of Hydrogen Energy,2024,52:816-826. |
| [16] | RHANDI M, TRÉGARO M, DRUART F,et al.Electrochemical hydrogen compression and purification versus competing technologies:Part I.Pros and cons[J].Chinese Journal of Catalysis,2020,41(5):756-769. |
| [17] | GAO Zhong, FAN Chunyang, YIN Zhuoyu,et al.Electrochemical hydrogen Compression:Module design and membrane development[J].Chemical Engineering Journal,2024,488:150733. |
| [18] | KIM J S, PARK J B, KIM Y M,et al.Fuel cell end plates:A review[J].International Journal of Precision Engineering and Manu- facturing,2008,9(1):33-46. |
| [19] | GAO Xin, CHEN Jiayi, XU Runjing,et al.Research progress and prospect of the materials of bipolar plates for proton exchange membrane fuel cells(PEMFCs)[J].International Journal of Hydrogen Energy,2024,50:711-743. |
| [20] | XU Xiaozhi, GOU Yong, ZHAN Xin,et al.Investigation of the effect of the TaC/α-C coating process on the properties of stainless steel bipolar plates[J].International Journal of Hydrogen Energy,2024,55:98-109. |
| [21] | SRIVASTAVA A, ROSS K A, SMITH C B.Coating developments towards enabling aluminum as a bipolar plate material for PEM fuel cells[J].Journal of Power Sources,2023,582:233513. |
| [22] | SANJID A, ANISUR M R, SINGH RAMAN R K.Durable degradation resistance of graphene coated nickel and monel-400 as bi-polar plates for proton exchange membrane fuel cell[J].Carbon,2019,151:68-75. |
| [23] | YAN Gaoxiang, ZHANG Xiang, WEI Lijuan,et al.Study on the effects of nano-copper addition on the properties of epoxy resin/graphite composite bipolar plates[J].International Journal of Hydrogen Energy,2024,69:576-585. |
| [24] | MODANLOO V, TALEBI-GHADIKOLAEE H, ALIMIRZALOO V,et al.Fracture prediction in the stamping of titanium bipolar plate for PEM fuel cells[J].International Journal of Hydrogen Energy,2021,46(7):5729-5739. |
| [25] | WANG Fang, INOUE A, KONG Fanli,et al.Formation and ultrahigh mechanical strength of multicomponent co-based bulk glassy alloys[J].Journal of Materials Research and Technology,2023,26:1050-1061. |
| [26] | CHANDA U K, PADHEE S P, PANDEY A K,et al.Electrodeposited Ni-Mo-Cr-P coatings for AISI 1020 steel bipolar plates[J].International Journal of Hydrogen Energy,2020,45(41):21892-21904. |
| [27] | AWIN Y, DUKHAN N.Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells[J].Applied Energy,2019,252:113458. |
| [28] | LIU Gaoyang, SHAN Dongfang, FANG Baizeng,et al.Novel hybrid coating of TiN and carbon with improved corrosion resistance for bipolar plates of PEM water electrolysis[J].International Journal of Hydrogen Energy,2023,48(50):18996-19007. |
| [29] | KANG H E, KIM S H, CHOI J H,et al.Selective etching-induced surface modifications of FeCrAl alloy bipolar plates:Mechanisms for enhanced corrosion resistance and hydrophobicity[J].Chemical Engineering Journal,2024,493:152409. |
| [30] | WAN Zhongmin, QUAN Wenxiang, YANG Chen,et al.Optimal design of a novel M-like channel in bipolar plates of proton exchange membrane fuel cell based on minimum entropy generati-on[J].Energy Conversion and Management,2020,205:112386. |
| [31] | SHI Qitong, FENG Cong, MING Pingwen,et al.Compressive stress and its impact on the gas diffusion layer:A review[J].International Journal of Hydrogen Energy,2022,47(6):3994-4009. |
| [32] | GUO Hui, CHEN Lubing, ISMAIL S A,et al.Gas diffusion layer for proton exchange membrane fuel cells:A review[J].Materials,2022,15(24):8800. |
| [33] | MOYDIEN H, LEVECQUE P, SUSAC D.Experimental study of water management and performance of titanium fibre felts as versatile gas diffusions layers for PEMFCs[J].International Journal of Hydrogen Energy,2023,48(84):32968-32981. |
| [34] | ZHOU Ke, LI Tianya, HAN Yufen,et al.Optimizing the hydrophobicity of GDL to improve the fuel cell performance[J].RSC Advances,2021,11(4):2010-2019. |
| [35] | ATHANASAKI G, JAYAKUMAR A, KANNAN A M.Gas diffusion layers for PEM fuel cells:Materials,properties and manufacturing:A review[J].International Journal of Hydrogen Energy,2023,48(6):2294-2313. |
| [36] | GUO Yuqing, PAN Fengwen, CHEN Wenmiao,et al.The controllable design of catalyst inks to enhance PEMFC performance:A review[J].Electrochemical Energy Reviews,2021,4(1):67- 100. |
| [37] | SEDLAK J M, AUSTIN J F, LA-CONTI A B.Hydrogen recovery and purification using the solid polymer electrolyte electrolyte electrolysis cell[J].International Journal of Hydrogen Energy,1981,6(1):45-51. |
| [38] | ZHANG Qiaoqiao, GUAN Jingqi.Single-atom catalysts for electrocatalytic applications[J].Advanced Functional Materials,2020,30(31):2000768. |
| [39] | YANG Huimin, CHEN Yao, QIN Yong.Application of atomic layer deposition in fabricating high-efficiency electrocatalysts[J].Chinese Journal of Catalysis,2020,41(2):227-241. |
| [40] | FENG Ruixue, LI Dong, YANG Hongzhou,et al.Epitaxial ultrathin Pt atomic layers on CrN nanoparticle catalysts[J].Advanced Materials,2024,36(9):2309251. |
| [41] | VAN NGUYEN T, TEKALGNE M, NGUYEN T P,et al.Electrocatalysts based on MoS2 and WS2 for hydrogen evolution reaction:An overview[J].Battery Energy,2023,2(3):20220057. |
| [42] | JAYABAL S, SARANYA G, GENG Dongsheng,et al.Insight into the correlation of Pt-support interactions with electrocatalytic activity and durability in fuel cells[J].Journal of Materials Chemistry A,2020,8(19):9420-9446. |
| [43] | YEON J,WOO L, HWAN K,et al.Interplay of ligand and strain effects in CO adsorption on bimetallic Cu/M(M=Ni,Ir,Pd,and Pt) catalysts from first-principles:Effect of different facets on catalysis[J].Catalysis Today,2021,359:57-64. |
| [44] | ZHANG Lei, WANG Qi, LI Lulu,et al.Single atom surface engineering:A new strategy to boost electrochemical activities of Pt catalysts[J].Nano Energy,2022,93:106813. |
| [45] | VENUGOPALAN G, BHATTACHARYA D, ANDREWS E,et al.Electrochemical pumping for challenging hydrogen separatio- ns[J].ACS Energy Letters,2022,7(4):1322-1329. |
| [46] | NORDIO M, EGUARAS BARAIN M, RAYMAKERS L,et al.Effect of CO2 on the performance of an electrochemical hydrogen compressor[J].Chemical Engineering Journal,2020,392:123647. |
| [47] | CHENG Xuan, SHI Zheng, GLASS N,et al.A review of PEM hydrogen fuel cell contamination:Impacts,mechanisms,and mitigation[J].Journal of Power Sources,2007,165(2):739-756. |
| [48] | DONG Wenyan, XU Cong, ZHAO Wenhui,et al.Poisoning effects of H2S,CS2,and COS on hydrogen oxidation reaction over Pt/C catalysts[J].ACS Applied Energy Materials,2022,5(10):12640-12650. |
| [49] | AHMAD S, NAWAZ T,ALI A,et al.An overview of proton exchange membranes for fuel cells:Materials and manufacturing[J].International Journal of Hydrogen Energy,2022,47(44):19086-19131. |
| [50] | HOUCHINS C, KLEEN G J, SPENDELOW J S,et al.U.S.DOE progress towards developing low-cost,high performance,durable polymer electrolyte membranes for fuel cell applications[J].Membranes,2012,2(4):855-878. |
| [51] | YIN Chongshan, HE Chunqing, LIU Qicheng,et al.Effect of the orientation of sulfonated graphene oxide(SG) on the gas-barrier properties and proton conductivity of a SG/Nafion composite membrane[J].Journal of Membrane Science,2021,625:119146. |
| [52] | CHEN Lei, CHEN Yanyu, TAO Wenquan.Schroeder′s paradox in proton exchange membrane fuel cells:A review[J].Renewable and Sustainable Energy Reviews,2023,173:113050. |
| [53] | ELLIOTT J A, PADDISON S J.Modelling of morphology and proton transport in PFSA membranes[J].Physical Chemistry Chemical Physics,2007,9(21):2602-2618. |
| [54] | ESMAEILI N, GRAY E M, WEBB C J.Non-fluorinated polymer composite proton exchange membranes for fuel cell applications:A review[J].ChemPhysChem,2019,20(16):2016-2053. |
| [55] | WOLSKA J, WALKOWIAK-KULIKOWSKA J.On the sulfonation of fluorinated aromatic polymers:Synthesis,characterization and effect of fluorinated side groups on sulfonation degree[J].European Polymer Journal,2020,129:109635. |
| [56] | PENG Jinwu, FU Xianzhu, LIU Dong,et al.An effective strategy to enhance dimensional-mechanical stability of phosphoric acid doped polybenzimidazole membranes by introducing in situ grown covalent organic frameworks[J].Journal of Membrane Science,2022,655:120603. |
| [57] | FAN Yuting, ZHANG Yuqing, ZHANG Ailing,et al.Breaking the trade-off between proton conductivity and mechanical stability through liquid-crystal-modified aramid fibers in sulfonated polyether ether ketone membranes[J].International Journal of Hydrogen Energy,2024,83:630-640. |
| [58] | EINSLA M L, KIM Y S, HAWLEY M,et al.Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity[J].Chemistry of Materials,2008,20(17):5636-5642. |
| [59] | LI Nanwen, WANG Chenyi, LEE S Y,et al.Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s[J].Angewandte Chemie International Edition,2011,50(39):9158-9161. |
| [60] | LI Nanwen, GUIVER M D.Ion transport by nanochannels in ion-containing aromatic copolymers[J].Macromolecules,2014,47(7):2175-2198. |
| [61] | LIU Bailing, HU Bo, DU Jing,et al.Precise molecular-level modification of nafion with bismuth oxide clusters for high-performance proton-exchange membranes[J].Angewandte Chemie International Edition,2021,60(11):6076-6085. |
| [62] | RICO-ZAVALA A, GURROLA M P, ARRIAGA L G,et al.Synthesis and characterization of composite membranes modified with Halloysite nanotubes and phosphotungstic acid for electrochemical hydrogen pumps[J].Renewable Energy,2018,122:163-172. |
| [63] | RICO-ZAVALA A, MATERA F V, ARJONA N,et al.Nanocomposite membrane based on SPEEK as a perspectives application in electrochemical hydrogen compressor[J].International Journal of Hydrogen Energy,2019,44(10):4839-4850. |
| [64] | PENG Quan, LI Yan, QIU Ming,et al.Enhancing proton conductivity of sulfonated poly(ether ether ketone)-based membranes by incorporating phosphotungstic-acid-coupled graphene oxide[J].Industrial & Engineering Chemistry Research,2021,60(11):4460-4470. |
| [65] | WANG Sijia, ZHU Tianhao, SHI Benbing,et al.Porous organic polymer with high-density phosphoric acid groups as filler for hybrid proton exchange membranes[J].Journal of Membrane Science,2023,666:121147. |
| [66] | LIU Ziwen, PANG Xiao, SHI Benbing,et al.Covalent organic frameworks with flexible side chains in hybrid PEMs enable highly efficient proton conductivity[J].Materials Horizons,2024,11(1):141-150. |
| [67] | SUN Pengzhan, MA Renzhi, SASAKI T.Recent progress on exploring exceptionally high and anisotropic H+/OH- ion conduction in two-dimensional materials[J].Chemical Science,2018,9(1):33-43. |
| [68] | SAHOO R, MONDAL S, PAL S C,et al.Covalent-organic frameworks(COFs) as proton conductors[J].Advanced Energy Materials,2021,11(39):2102300. |
| [69] | TAN Chaoliang, CAO Xiehong, WU Xuejun,et al.Recent advances in ultrathin two-dimensional nanomaterials[J].Chemical Reviews,2017,117(9):6225-6331. |
| [70] | ZHAO Qiang, LEE D W, AHN B K,et al.Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange[J].Nature Materials,2016,15(4):407-412. |
| [71] | CHANDRA S, KUNDU T, DEY K,et al.Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks[J].Chemistry of Materials,2016,28(5):1489-1494. |
| [72] | XING Na, PANG Xiao, MENG Qingrui,et al.Incorporating graphene oxide into COF membranes enables ultrahigh proton conductivity and ultralow H2 crossover[J].Journal of Membrane Science,2023,688:122103. |
| [73] | GAO Zhong, YIN Zhuoyu, KONG Yan,et al.Robust and highly proton conductive COF composite membranes for fuel cell and electrochemical hydrogen compression[J].Chemical Engineering Journal,2024,490:151368. |
| [74] | MRUSEK S, BLASIUS M, MORGENROTH F,et al.Hydrogen extraction from methane-hydrogen mixtures from the natural gas grid by means of electrochemical hydrogen separation and compression[J].International Journal of Hydrogen Energy,2024,50:526-538. |
| [75] | VAN ACHT S C J, LAYCOCK C, CARR S J W,et al.Simulation of integrated novel PSA/EHP/C process for high-pressure hydrogen recovery from Coke Oven Gas[J].International Journal of Hydrogen Energy,2020,45(30):15196-15212. |
| [1] | 华东阳, 于同川, 曹颜玉, 胡蓉, 范学君, 鞠朋朋. “膜分离+醇胺法”耦合天然气脱CO2工艺研究[J]. 无机盐工业, 2025, 57(5): 87-92. |
| [2] | 孙莉萍, 成怀刚, 郭文轩, 崔莉. 电解铝废渣酸浸液结晶分离高纯氯化铝的工艺研究[J]. 无机盐工业, 2025, 57(5): 100-107. |
| [3] | 姜明徽, 张立卿, 庞美晶, 刘超. 用于实现一价阳离子筛分的离子通道研究进展[J]. 无机盐工业, 2025, 57(3): 9-17. |
| [4] | 马铭扬, 陈敏奕, 孙涛, 薛斌. SiO2介导超疏水/超亲油杂化海绵的制备及油/水分离研究[J]. 无机盐工业, 2025, 57(3): 64-70. |
| [5] | 郭颖君, 吴松松, 丁春艳, 赵世凯, 宋涛, 温广武. 锶长石微晶玻璃转晶制备SSZ-13分子筛膜[J]. 无机盐工业, 2025, 57(2): 76-82. |
| [6] | 张生鹏, 黄旻旻, 唐发满, 刘卫平. 青海盐湖纳滤膜性能劣化原因分析[J]. 无机盐工业, 2025, 57(10): 90-97. |
| [7] | 赵闯, 张博宇, 李犇, 靳凤英, 李滨, 孙振海, 郭春垒. 吸附剂对多环芳烃吸附分离技术的研究[J]. 无机盐工业, 2024, 56(7): 61-68. |
| [8] | 刘凯隆, 朱孔义, 郭春垒, 马晓彪, 王宇健, 盛强, 李翔, 王银斌, 靳凤英. 工艺条件对柴油吸附分离重芳烃轻质化反应的影响[J]. 无机盐工业, 2024, 56(6): 139-146. |
| [9] | 艾欣, 董琪, 豆叶帆, 李恩泽, 成怀刚, 潘子鹤. 冠醚功能化改性及其对金属离子分离研究进展[J]. 无机盐工业, 2024, 56(6): 14-25. |
| [10] | 成春春, 李玉龙, 张志强, 刘雪菁. 溶析结晶用于盐湖卤水提钾和镁锂分离研究[J]. 无机盐工业, 2024, 56(6): 34-39. |
| [11] | 刘君仪, 冯庆革, 陈考, 李想, 覃方红, 黄潇潇, 冯淋. 模板法制备多孔超疏水SiO2/PDMS海绵及油水分离应用[J]. 无机盐工业, 2024, 56(5): 45-52. |
| [12] | 赵闯, 陈自浩, 张博宇, 李犇, 靳凤英, 李滨, 孙振海, 郭春垒. 分子筛吸附剂对不同类型柴油吸附分离性能的研究[J]. 无机盐工业, 2024, 56(3): 80-85. |
| [13] | 权家园, 付春燕, 邓必成, 黄亚斌, 况王强, 邝圣庭, 廖伍平. 氨基膦酸酯功能化碳材料对钍的选择性电吸附性能研究[J]. 无机盐工业, 2024, 56(12): 42-50. |
| [14] | 陈海霞, 严红, 孙云龙, 马国强. 锂资源提取技术研究进展[J]. 无机盐工业, 2024, 56(1): 9-22. |
| [15] | 周世奇, 王涛, 敬方梨, 罗仕忠. 硝酸镁改性碳分子筛分离氮气/甲烷的性能研究[J]. 无机盐工业, 2023, 55(9): 75-80. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||
