无机盐工业 ›› 2024, Vol. 56 ›› Issue (1): 9-22.doi: 10.19964/j.issn.1006-4990.2023-0299
收稿日期:
2023-05-31
出版日期:
2024-01-10
发布日期:
2024-01-18
作者简介:
陈海霞(1997— ),女,硕士,助理工程师,主要研究方向为锂离子电池电解液的开发与应用;E-mail:chenhaixia3@sinochem.com。
CHEN Haixia(), YAN Hong, SUN Yunlong, MA Guoqiang
Received:
2023-05-31
Published:
2024-01-10
Online:
2024-01-18
摘要:
锂被认为是21世纪最重要的能源金属之一,在全球减碳的共同目标下,新能源产业快速发展,推动过去3 a锂消费量的持续增长,引发国内外对提锂技术的研究热潮。根据锂资源的赋存状态,对矿石提锂及卤水提锂技术进行综述,系统性地总结对比了各种方法的优缺点。从矿石中提取锂的方法主要有石灰石烧结法、硫酸法、硫酸盐法、压煮法、氯化焙烧法、直接酸浸法;卤水提锂中受到广泛关注的技术主要有沉淀法、吸附法、溶剂萃取法、膜分离法、电化学法。由于碳酸锂价格高位回落,国际锂盐获取形势愈加严峻,因此不断开发并完善提锂技术,增强中国的锂资源自供自给能力,实现提锂技术的降本增效势在必行。
中图分类号:
陈海霞, 严红, 孙云龙, 马国强. 锂资源提取技术研究进展[J]. 无机盐工业, 2024, 56(1): 9-22.
CHEN Haixia, YAN Hong, SUN Yunlong, MA Guoqiang. Research progress of lithium resource extraction technology[J]. Inorganic Chemicals Industry, 2024, 56(1): 9-22.
表1
矿石提锂工艺对比
方法 | 原理 | 适用范围 | 优点 | 缺点 |
---|---|---|---|---|
石灰石烧结法 | 与石灰石按比例混合焙烧,破坏矿物结构,使锂转化为可溶性LiOH | 无具体限制 | 实用性强;生产成本低;原料易获取 | 蒸发能耗高;锂回收率低;浸出的矿泥及滤渣易凝聚,设备维护困难;废渣量大,难以再利用;面临淘汰 |
硫酸法 | 浓硫酸酸化焙烧将矿石中的锂转变为硫酸锂 | 矿石(锂辉石)提锂主流方法,矿石品位要求低 | 工艺简单;锂及其他有价金属提取率高;废渣少 | 硫酸腐蚀设备;硫酸和纯碱消耗量大;高温焙烧能耗高;提取锂云母时浸出液杂质含量高,纯化困难 |
硫酸盐法 | 以硫酸盐作为焙烧助剂,转化为可溶性硫酸锂浸出以实现锂溶出 | 锂云母提锂主流方法,主要用于含锂硅酸盐类和磷酸盐矿物 | 工艺简单;较硫酸法延长设备寿命;产物杂质少;产率高 | 能耗较高;会生成含氟、硫有害气 体,污染环境;金属铷和铯的回收率低 |
压煮法 | 在高压条件下用Na+或Ca2+取代锂矿石中的Li+以得到含锂浸出液 | 主要用于处理锂云母矿 | 工艺流程简单;锂浸出率高;物料流通量小;设备腐蚀程度小 | 高温高压,反应条件苛刻;设备要求高;需脱氟焙烧,污染环境 |
氯化焙烧法 | 利用氯化剂将碱金属离子和其他有价金属离子转化为氯化物提取到浸出液中 | 主要用于处理锂云母矿 | 工艺流程简单;氯化剂廉价;能耗低;锂回收率高 | 工艺引入氯,腐蚀设备;高温氯化LiCl 气体难以收集;生产成本高;产生影响环境的废气、废渣 |
全湿法 | 利用氟离子对铝硅酸盐的强腐蚀性,省却焙烧工艺,以硫酸为浸出剂,氟化物为助浸剂提取锂 | 含锂硅酸盐矿物 | 无需高温焙烧,能耗低;成本低 | 存在副产品回收、废水处理、分离工艺优化问题 |
表2
卤水提锂工艺对比
方法 | 原理 | 适用范围 | 优点 | 缺点 |
---|---|---|---|---|
沉淀法 | 利用太阳能蒸发浓缩、逐级除杂富集锂,通过化学沉淀分离锂产品 | 高锂含量和低镁锂比的卤水 | 工艺成熟,碳酸盐沉淀法已实现工业应用;操作简易;成本较低;能耗低 | 工艺流程长;回收率低;产生大量废渣,环境不友好 |
吸附法 | 使用高选择性吸附剂来吸附卤水中Li+以实现从高镁锂比卤水中分离锂离子 | 无具体限制 | 铝盐吸附剂工艺成熟,已产业化;对卤水镁锂比无要求;高洗脱率;工艺流程简单;绿色环保 | 粉状吸附剂难以回收;流动性差;循环稳定性差;溶损严重;杂质含量高;吸附容量低 |
溶剂萃取法 | 利用锂离子在水相和有机相的溶解度差异,转相富集,再通过反萃提取 | 无具体限制 | 高镁锂比卤水中提锂最有效方法;工艺简单;成本较低;有机相循环使用,绿色经济 | TBP萃取剂在水中溶损严重;氯化铁易乳化;高浓度盐酸造成设备腐蚀;萃取剂易挥发 |
膜分离法 | 通过外在驱动力的作用对溶质进行分离,为离子选择性迁移过程,主要分为纳滤法和电渗析法 | 无具体限制 | 镁锂分离效率高;可操作性强;生产稳定性佳;淡水消耗量小;清洁无污染 | 进口膜材料成本较高;膜易堵塞或损坏 |
电化学法 | 锂电池正极材料充放电过程中伴随Li+在电极与电解液间转移,实现吸附、脱附效果 | 无具体限制 | 适用低品位、复杂盐湖卤水体系;装置可模块化;提锂效率高;环境友好 | 锂吸附容量较低;电极循环性能较差;能耗高;副反应较多 |
1 | MENG Fei, MCNEICE J, ZADEH S S,et al.Review of lithium production and recovery from minerals,brines,and lithium-ion batteries[J].Mineral Processing and Extractive Metallurgy Review,2021,42(2):123-141. |
2 | LIU Yubo, MA Baozhong, LV Yingwei,et al.Thorough extraction of lithium and rubidium from lepidolite via thermal activation and acid leaching[J].Minerals Engineering,2022,178:107407. |
3 | 乜贞,伍倩,丁涛,等.中国盐湖卤水提锂产业化技术研究进展[J].无机盐工业,2022,54(10):1-12. |
NIE Zhen, WU Qian, DING Tao,et al.Research progress on industrialization technology of lithium extraction from salt lake brine in China[J].Inorganic Chemicals Industry,2022,54(10):1-12. | |
4 | 林钰青,张以任,邱宇隆,等.膜技术在盐湖提锂中的进展和展望[J].无机盐工业,2023,55(1):33-45. |
LIN Yuqing, ZHANG Yiren, QIU Yulong,et al.Progress and prospect of membrane technology in lithium extraction from salt lake brine[J].Inorganic Chemicals Industry,2023,55(1):33-45. | |
5 | KELLY J C, WANG M, DAI Qiang,et al.Energy,greenhouse gas,and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries[J].Resources,Conservation and Recycling,2021,174:105762. |
6 | CARELLA E, HERNÁNDEZ T.Ceramics for fusion reactors:The role of the lithium orthosilicate as breeder[J].Physica B:Condensed Matter,2012,407(22):4431-4435. |
7 | HANNAN M A, LIPU M S H, HUSSAIN A,et al.A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications:Challenges and recommendations[J].Renewable and Sustainable Energy Reviews,2017,78:834-854. |
8 | DEMBINSKA-KRAJEWSKA D, RYBAKOWSKI J K.Psychotropic drugs and personality changes:A case of lithium[J].Pharmacological Reports,2015,67(6):1204-1207. |
9 | LI D, GUO J W, WANG X S,et al.Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic[J].Materials Science and Engineering:A,2016,669:332-339. |
10 | FIKRY R M, EL-ADLY R A, ISMAIL N A,et al.Some azine and azole derivatives as antioxidant additives for lithium lubricating grease[J].Egyptian Journal of Petroleum,2013,22(1):61-71. |
11 | KAVANAGH L, KEOHANE J, GARCIA CABELLOS G,et al.Global lithium sources:Industrial use and future in the electric vehicle industry:A review[J].Resources,2018,7(3):57. |
12 | CHOUBEY P K, KIM M S, SRIVASTAVA R R,et al.Advance review on the exploitation of the prominent energy-storage element:Lithium.Part I:From mineral and brine resources[J].Minerals Engineering,2016,89:119-137. |
13 | SWAIN B.Recovery and recycling of lithium:A review[J].Separation and Purification Technology,2017,172:388-403. |
14 | GOTO M, OKUMURA K, NAKAGAWA S,et al.Nuclear and thermal feasibility of lithium-loaded high temperature gas-cooled reactor for tritium production for fusion reactors[J].Fusion Engineering and Design,2018,136:357-361. |
15 | YOUSSEF A, ANWAR R, BASHTER I,et al.Neutron yield as a measure of achievement nuclear fusion using a mixture of deuterium and tritium isotopes[J].Physica Scripta,2022,97(8):085601. |
16 | STEFANELLI E, PUCCINI M, PESETTI A,et al.Lithium orthosilicate as nuclear fusion breeder material:Optimization of the drip casting production technology[J].Nuclear Materials and Energy,2022,30:101131. |
17 | KESLER S E, GRUBER P W, MEDINA P A,et al.Global lithium resources:Relative importance of pegmatite,brine and other deposits[J].Ore Geology Reviews,2012,48:55-69. |
18 | 邢凯,朱清,任军平,等.全球锂资源特征及市场发展态势分析[J].地质通报,2023,42(8):1402-1421. |
XING Kai, ZHU Qing, REN Junping,et al.Analysis of global lithi-um resources characteristics and market development trend[J].Geological Bulletin of China,2023,42(8):1402-1421. | |
19 | GAO Tianming, FAN Na, CHEN Wu,et al.Lithium extraction from hard rock lithium ores(spodumene,lepidolite,zinnwaldite,petalite):Technology,resources,environment and cost[J].China Geology,2023,6(1):137-153. |
20 | PEIRÓ L T, MÉNDEZ G V, AYRES R U.Lithium:Sources,production,uses,and recovery outlook[J].Journal of Operations Management,2013,65(8):986-996. |
21 | WANG Jiajia, YUE Xiyan, WANG Peifen,et al.Electrochemical technologies for lithium recovery from liquid resources:A revi-ew[J].Renewable and Sustainable Energy Reviews,2022,154:111813. |
22 | XU Longhua, TIAN Jia, WU Houqin,et al.Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals[J].Advances in Colloid and Interface Science,2018,256:340-351. |
23 | SALAKJANI N K, SINGH P, NIKOLOSKI A N.Production of lithium:A literature review part 1:Pretreatment of spodumene[J].Mineral Processing and Extractive Metallurgy Review,2020,41(5):335-348. |
24 | AYLMORE M G, MERIGOT K, RICKARD W D A,et al.Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium[J].Minerals Engineering,2018,119:137-148. |
25 | MOON K S, FUERSTENAU D W.Surface crystal chemistry in selective flotation of spodumene(LiAl[SiO3]2) from other aluminosilicates[J].International Journal of Mineral Processing,2003,72(1/2/3/4):11-24. |
26 | KUAI Yuqing, YAO Wengui, MA Hongwen,et al.Recovery lithium and potassium from lepidolite via potash calcination-leaching process[J].Minerals Engineering,2021,160:106643. |
27 | MESHRAM P, PANDEY B D, MANKHAND T R.Extraction of lithium from primary and secondary sources by pre-treatment,leaching and separation:A comprehensive review[J].Hydrometallurgy,2014,150:192-208. |
28 | ZELIKMAN A N, KREIN O E, SAMSONOV G V.Metallurgy of rare metals[M].Washington,DC:NASA and National Science Foundation,1966:458. |
29 | 林高逵.江西锂云母-石灰石烧结工艺的改进研究[J].稀有金属与硬质合金,1999,27(2):46-48,14. |
LIN Gaokui.Improvement on sintering of Jiangxi limica and limestone[J].Rare Metals and Cemented Carbides,1999,27(2):46-48,14. | |
30 | YELATONTSEV D, MUKHACHEV A.Processing of lithium ores:Industrial technologies and case studies:A review[J].Hydrometallurgy,2021,201:105578. |
31 | RIOYO J, TUSET S, GRAU R.Lithium extraction from spodumene by the traditional sulfuric acid process:A review[J].Mineral Processing and Extractive Metallurgy Review,2022,43(1):97-106. |
32 | ZHANG Yuqing, MA Baozhong, LV Yingwei,et al.An effective method for directly extracting lithium from α-spodumene by activated roasting and sulfuric acid leaching[J].Journal of Industrial and Engineering Chemistry,2023,122:540-550. |
33 | DESSEMOND C, SOUCY G, HARVEY J P,et al.Phase transitions in the α-γ-β spodumene thermodynamic system and impact of γ-spodumene on the efficiency of lithium extraction by acid leaching[J].Minerals,2020,10(6):519. |
34 | SALAKJANI N K, SINGH P, NIKOLOSKI A N.Mineralogical transformations of spodumene concentrate from Greenbushes,Western Australia.Part 1:Conventional heating[J].Minerals Engineering,2016,98:71-79. |
35 | ABDULLAH A A, OSKIERSKI H C, ALTARAWNEH M,et al.Phase transformation mechanism of spodumene during its calcination[J].Minerals Engineering,2019,140:105883. |
36 | KOTSUPALO N P, MENZHERES L T, RYABTSEV A D,et al.Mechanical activation of α-spodumene for further processing into lithium compounds[J].Theoretical Foundations of Chemical Engineering,2010,44(4):503-507. |
37 | SALAKJANI N K, SINGH P, NIKOLOSKI A N.Acid roasting of spodumene:Microwave vs.conventional heating[J].Minerals Engineering,2019,138:161-167. |
38 | SALAKJANI N K, NIKOLOSKI A N, SINGH P.Mineralogical transformations of spodumene concentrate from Greenbushes,Western Australia.Part 2:Microwave heating[J].Minerals Engineering,2017,100:191-199. |
39 | LIU Jinlian, YIN Zhoulan, LI Xinhai,et al.Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium[J].Transactions of Nonferrous Metals Society of China,2019,29(3):641-649. |
40 | VIECELI N, NOGUEIRA C A, PEREIRA M F C,et al.Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates[J].Mineral Processing and Extractive Metallurgy Review,2017,38(1):62-72. |
41 | LUONG V T, KANG Dongjun, AN J W,et al.Factors affecting the extraction of lithium from lepidolite[J].Hydrometallurgy,2013,134-135:54-61. |
42 | SETOUDEH N, NOSRATI A, WELHAM N J.Lithium recovery from mechanically activated mixtures of lepidolite and sodium sulfate[J].Mineral Processing and Extractive Metallurgy,2021,130(4):354-361. |
43 | LUONG V T, KANG Dongjun, AN J W,et al.Iron sulphate roasting for extraction of lithium from lepidolite[J].Hydrometallurgy,2014,141:8-16. |
44 | ZHANG Xiufeng, CHEN Zhichao, ROHANI S,et al.Simultaneous extraction of lithium,rubidium,cesium and potassium from lepidolite via roasting with iron(Ⅱ) sulfate followed by water leaching[J].Hydrometallurgy,2022,208:105820. |
45 | YAN Qunxuan, LI Xinhai, WANG Zhixing,et al.Extraction of lithium from lepidolite by sulfation roasting and water leaching[J].International Journal of Mineral Processing,2012,110-111:1-5. |
46 | KONG Xiangzhong, YE Hua, QIN Yu.Factors of extracting lithium from lepidolite by sulfate roasting and dilute sulphuric acid leaching[J].Applied Mechanics and Materials,2014,522-524:1467-1470. |
47 | KUANG Ge, LIU Yu, LI Huan,et al.Extraction of lithium from β-spodumene using sodium sulfate solution[J].Hydrometallurgy,2018,177:49-56. |
48 | ALHADAD M F, OSKIERSKI H C, CHISCHI J,et al.Lithium extraction from β-spodumene:A comparison of keatite and analcime processes[J].Hydrometallurgy,2023,215:105985. |
49 | YAN Qunxuan, LI Xinhai, YIN Zhoulan,et al.A novel process for extracting lithium from lepidolite[J].Hydrometallurgy,2012,121-124:54-59. |
50 | CHEN Ya, TIAN Qianqiu, CHEN Baizhen,et al.Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process[J].Hydrometallurgy,2011,109(1/2):43-46. |
51 | SONG Yunfeng, ZHAO Tianyu, HE Lihua,et al.A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate[J].Hydrometallurgy,2019,189:105141. |
52 | XING Peng, WANG Chengyan, ZENG Lei,et al.Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene[J].ACS Sustainable Chemistry & Engineering,2019,7(10):9498-9505. |
53 | GAIDOUMI A EL, BENABDALLAH A C, BALI B EL,et al.Synthesis and characterization of zeolite HS using natural pyrophyllite as new clay source[J].Arabian Journal for Science and Engineering,2018,43(1):191-197. |
54 | KUNDU D, DEY B, NASKAR M K,et al.Emulsion-derived urchin-shaped hydroxy sodalite particles[J].Materials Letters,2010,64(14):1630-1633. |
55 | LV Yingwei, XING Peng, MA Baozhong,et al.Efficient extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation[J].ACS Sustainable Chemistry & Engineering,2020,8(38):14462-14470. |
56 | MULWANDA J, SENANAYAKE G, OSKIERSKI H,et al.Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition[J].Hydrometallurgy,2021,201:105538. |
57 | YANG Hui, MA Baozhong, LV Yingwei,et al.Novel technology for synergistic extraction of Li and Rb from a complex lithium concentrate[J].ACS Sustainable Chemistry & Engineering,2022,10(36):12030-12040. |
58 | 李良彬,刘明,彭爱平,等.锂云母提锂工艺及工业化应注意的问题[J].世界有色金属,2014(8):37-39. |
59 | LIU Yubo, LV Yingwei, MA Baozhong,et al.An environmentally friendly improved chlorination roasting process for lepidolite with reduced chlorinating agent dosage and chlorinated waste gas emission[J].Separation and Purification Technology,2023,310:123173. |
60 | BARBOSA L I, VALENTE G, OROSCO R P,et al.Lithium extraction from β-spodumene through chlorination with chlorine gas[J].Minerals Engineering,2014,56:29-34. |
61 | BARBOSA L I, GONZÁLEZ J A, DEL CARMEN RUIZ M.Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride[J].Thermochimica Acta,2015,605:63- 67. |
62 | YAN Qunxuan, LI Xinhai, WANG Zhixing,et al.Extraction of lithium from lepidolite using chlorination roasting-water leaching process[J].Transactions of Nonferrous Metals Society of China,2012,22(7):1753-1759. |
63 | ZHANG Xiufeng, ALDAHRI T, TAN Xiumin,et al.Efficient co-extraction of lithium,rubidium,cesium and potassium from lepidolite by process intensification of chlorination roasting[J].Chemical Engineering and Processing:Process Intensification,2020,147:107777. |
64 | GUO Hui, LV Menghua, KUANG Ge,et al.Stepwise heat treatment for fluorine removal on selective leachability of Li from lepidolite using HF/H2SO4 as lixiviant[J].Separation and Purification Technology,2021,259:118194. |
65 | ROSALES G D, DEL CARMEN RUIZ M, RODRIGUEZ M H.Novel process for the extraction of lithium from β-spodumene by leaching with HF[J].Hydrometallurgy,2014,147-148:1-6. |
66 | GUO Hui, KUANG Ge, WANG Haidong,et al.Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid[J].Minerals,2017,7(11):205. |
67 | GUO Hui, LV Menghua, KUANG Ge,et al.Enhanced lithium extraction from α-spodumene with fluorine-based chemical method:A stepwise heat treatment for fluorine removal[J].Minerals Engineering,2021,174:107246. |
68 | GUO Hui, YU Haizhao, ZHOU Anan,et al.Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium[J].Transactions of Nonferrous Metals Society of China,2019,29(2):407-415. |
69 | WANG Haidong, ZHOU Anan, GUO Hui,et al.Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid[J].Journal of Central South University,2020,27(1):27-36. |
70 | GUO Hui, KUANG Ge, LI Huan,et al.Enhanced lithium leaching from lepidolite in continuous tubular reactor using H2SO4+H2SiF6 as lixiviant[J].Transactions of Nonferrous Metals Society of China,2021,31(7):2165-2173. |
71 | 张亮,杨卉芃,柳林,等.全球提锂技术进展[J].矿产保护与利用,2020,40(5):24-31. |
ZHANG Liang, YANG Huipeng, LIU Lin,et al.Global technology trends of lithium extraction[J].Conservation and Utilization of Mineral Resources,2020,40(5):24-31. | |
72 | CATOVIC E.Process for extracting and recovering lithium values from lithium bearing materials:US,10883157[P].2021-01-05. |
73 | ZHU Rong, WANG Shixin, SRINIVASAKANNAN C,et al.Lithium extraction from salt lake brines with high magnesium/lithium ratio:A review[J].Environmental Chemistry Letters,2023,21(3):1611-1626. |
74 | VERA M L, TORRES W R, GALLI C I,et al.Environmental impact of direct lithium extraction from brines[J].Nature Reviews Earth & Environment,2023,4(3):149-165. |
75 | PAN Yanan, YU Jianguo, LIN Sen.A rational strategy for synchronous extraction of lithium and boron from salt lake brines[J].Chemical Engineering Science,2023,276:118757. |
76 | XU Ping, HONG Jun, QIAN Xiaoming,et al.Materials for lithium recovery from salt lake brine[J].Journal of Materials Science,2021,56(1):16-63. |
77 | ZHANG Ye, HU Yuehua, WANG Li,et al.Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J].Minerals Engineering,2019,139:105868. |
78 | WANG Huaiyou, ZHONG Yuan, DU Baoqiang,et al.Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process[J].Hydrometallurgy,2018,175:102-108. |
79 | LIU Jinlian, YIN Zhoulan, LI Xinhai,et al.A novel process for the selective precipitation of valuable metals from lepidolite[J].Minerals Engineering,2019,135:29-36. |
80 | XIAO Chao, XIAO Liansheng, GAO Congjie,et al.Thermodynamic study on removal of magnesium from lithium chloride solutions using phosphate precipitation method[J].Separation and Purification Technology,2015,156:582-587. |
81 | HE Lihua, XU Wenhua, SONG Yunfeng,et al.Selective removal of magnesium from a lithium-concentrated anolyte by magnesium ammonium phosphate precipitation[J].Separation and Purification Technology,2017,187:214-220. |
82 | ZHANG Ye, HU Yuehua, SUN Ning,et al.A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine[J].Hydrometallurgy,2019,187:125-133. |
83 | LAI Xianrong, XIONG Pan, ZHONG Hui.Extraction of lithium from brines with high Mg/Li ratio by the crystallization-precipita-tion method[J].Hydrometallurgy,2020,192:105252. |
84 | 张丽芬,张大义,欧阳红勇,等.高镁锂比盐湖卤水镁锂分离工艺[J].矿冶工程,2016,36(4):83-87. |
ZHANG Lifen, ZHANG Dayi, OUYANG Hongyong,et al.Technique for separating magnesium and lithium from salt lake brine with high Mg/Li ratio[J].Mining and Metallurgical Engineering,2016,36(4):83-87. | |
85 | REICH R, SLUNITSCHEK K, DANISI R M,et al.Lithium extraction techniques and the application potential of different sorbents for lithium recovery from brines[J].Mineral Processing and Extractive Metallurgy Review,2023,44(4):261-280. |
86 | PARANTHAMAN M P, LI Ling, LUO Jiaqi,et al.Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents[J].Environmental Science & Technology,2017,51(22):13481-13486. |
87 | ZHONG Jing, LIN Sen, YU Jianguo.Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides[J].Journal of Colloid and Interface Science,2020,572:107-113. |
88 | YU T M, CAROLINE REIS MEIRA A, CRISTINA KREUTZ J,et al.Exploring the surface reactivity of the magnetic layered double hydroxide lithium-aluminum:An alternative material for sorption and catalytic purposes[J].Applied Surface Science,2019,467-468:1195-1203. |
89 | LU Mengxiang, SHAO Liqiang, YANG Ying,et al.Simultaneous recovery of lithium and boron from brine by the collaborative adsorption of lithium-ion sieves and boron chelating resins[J].Industrial & Engineering Chemistry Research,2023,62(3):1508-1522. |
90 | BAO Luri, ZHANG Jingze, TANG Weiping,et al.Synthesis and adsorption properties of metal oxide-coated lithium ion-sieve from salt lake brine[J].Desalination,2023,546:116196. |
91 | 张理元,沈如倩,阳金菊,等.锂离子筛研究进展[J].无机盐工业,2022,54(5):28-37. |
ZHANG Liyuan, SHEN Ruqian, YANG Jinju,et al.Research progress on lithium ion sieves[J].Inorganic Chemicals Industry,2022,54(5):28-37. | |
92 | TIAN Liyan, MA Wei, HAN Mei.Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide[J].Chemical Engineering Journal,2010,156(1):134-140. |
93 | LIN Hongyu, YU Xiaoping, LI Mingli,et al.Synthesis of polyporous ion-sieve and its application for selective recovery of lithium from geothermal water[J].ACS Applied Materials & Interfaces,2019,11(29):26364-26372. |
94 | LIU Minxia, WU Dang, QIN Dongling,et al.Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance[J].Chinese Journal of Chemical Engineering,2022,45:258-267. |
95 | MOAZENI M, HAJIPOUR H, ASKARI M,et al.Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents[J].Materials Research Bulletin,2015,61:70-75. |
96 | WEI Shudan, WEI Yuanfeng, CHEN Tao,et al.Porous lithium ion sieves nanofibers:General synthesis strategy and highly selective recovery of lithium from brine water[J].Chemical Engineering Journal,2020,379:122407. |
97 | LI Xiaowei, CHEN Linlin, CHAO Yanhong,et al.Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene[J].Desalination,2022,537:115847. |
98 | ZHANG Junxiang, CHENG Zeyu, QIN Xinbo,et al.Recent advances in lithium extraction from salt lake brine using coupled and tandem technologies[J].Desalination,2023,547:116225. |
99 | 康锦,卫丽娜,成怀刚.离子液体用于盐湖卤水萃取提锂的研究进展[J].无机盐工业,2022,54(1):1-6. |
KANG Jin, WEI Lina, CHENG Huaigang.Research progress on application of ionic liquids in extracting lithium from salt lak-es[J].Inorganic Chemicals Industry,2022,54(1):1-6. | |
100 | LI Zheng, BINNEMANS K.Selective removal of magnesium from lithium-rich brine for lithium purification by synergic solvent extraction using β-diketones and Cyanex 923[J].AIChE Journal,2020,66(7):e16246. |
101 | BUKOWSKY H, UHLEMANN E, GLOE K,et al.The separation of calcium and magnesium from lithium chloride by liquid-liquid extraction with di(2-ethylhexyl) phosphoric acid[J].Hydrometallurgy,1992,28(3):323-329. |
102 | ZHOU Zhiyong, QIN Wei, LIANG Shengke,et al.Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl3 [J].Industrial & Engineering Chemistry Research,2012,51(39):12926-12932. |
103 | XIANG Wei, LIANG Shengke, ZHOU Zhiyong,et al.Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium[J].Hydrometallurgy,2016,166:9-15. |
104 | QIAO Linju, CHEN Hang, YU Jianguo.Recovery of lithium from salt-lake brine by liquid-liquid extraction using TBP-FeCl3 based mixture solvent[J].The Canadian Journal of Chemical Engineering,2023,101(4):2139-2147. |
105 | SONG Jianfeng, HUANG Tao, QIU Hongbin,et al.Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4∙2TBP] as extractant:Thermodynamics,kinetics and process- es[J].Hydrometallurgy,2017,173:63-70. |
106 | YU Xiaoping, FAN Xuebing, GUO Yafei,et al.Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate[J].Separation and Purification Technology,2019,211:790-798. |
107 | HORMATI A, REZAI B, HAMIDIAN SHOORMASTI H,et al.Extraction of lithium ions from salt lake brine using magnetic ionic liquid:Kinetic and equilibrium studies[J].Inorganic Che- mistry Communications,2022,142:109693. |
108 | FOO Z H, REHMAN D, BOUMA A T,et al.Lithium concentration from salt-lake brine by donnan-enhanced nanofiltration[J].Environmental Science & Technology,2023,57(15):6320-6330. |
109 | WANG Wenguang, HONG Guanghui, ZHANG Yanqiu,et al.Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction[J].Journal of Membrane Science,2023,675:121534. |
110 | CHILDRESS A E, ELIMELECH M.Relating nanofiltration membrane performance to membrane charge(electrokinetic) characteristics[J].Environmental Science & Technology,2000,34(17):3710-3716. |
111 | ZHANG Haizhen, XU Zhenliang, DING Hao,et al.Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+ [J].Desalination,2017,420:158-166. |
112 | CHEN Yongliang, LIU Fu, WANG Yi,et al.A tight nanofiltration membrane with multi-charged nanofilms for high rejection to concentrated salts[J].Journal of Membrane Science,2017,537:407-415. |
113 | GUO Yi, YING Yulong, MAO Yiyin,et al.Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J].Angewandte Chemie International Edition,2016,55(48):15120-15124. |
114 | SUN Shuying, NIE Xiaoyao, HUANG Jun,et al.Molecular simulation of diffusion behavior of counterions within polyelectrolyte membranes used in electrodialysis[J].Journal of Membrane Science,2020,595:117528. |
115 | LIU Gui, ZHAO Zhongwei, HE Lihua.Highly selective lithium recovery from high Mg/Li ratio brines[J].Desalination,2020,474:114185. |
116 | PAN Xijuan, DOU Zhihe, MENG Deliang,et al.Electrochemical separation of magnesium from solutions of magnesium and lithium chloride[J].Hydrometallurgy,2020,191:105166. |
117 | ZHAO Zhongwei, SI Xiufen, LIU Xuheng,et al.Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials[J].Hydrometallurgy,2013,133:75-83. |
118 | XIONG Jiachun, HE Lihua, LIU Dongfu,et al.Olivine-FePO4 preparation for lithium extraction from brines via electrochemical de-intercalation/Intercalation method[J].Desalination,2021,520:115326. |
119 | XU Wenhua, LIU Dongfu, LIU Xuheng,et al.Highly selective and efficient lithium extraction from brines by constructing a novel multiple-crack-porous LiFePO4/FePO4 electrode[J].Desalination,2023,546:116188. |
120 | XU Xin, ZHOU You, FENG Zhiwen,et al.A self-supported λ-MnO 2 film electrode used for electrochemical lithium recovery from brines[J].ChemPlusChem,2018,83(6):521-528. |
121 | MU Yingxin, ZHANG Chengyi, ZHANG Wen,et al.Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes[J].Desalination,2021,511:115112. |
[1] | 赵闯, 陈自浩, 张博宇, 李犇, 靳凤英, 李滨, 孙振海, 郭春垒. 分子筛吸附剂对不同类型柴油吸附分离性能的研究[J]. 无机盐工业, 2024, 56(3): 80-85. |
[2] | 周世奇, 王涛, 敬方梨, 罗仕忠. 硝酸镁改性碳分子筛分离氮气/甲烷的性能研究[J]. 无机盐工业, 2023, 55(9): 75-80. |
[3] | 付煜, 邓觅, 黄冬根, 万金保. 盐湖卤水提锂技术研究进展[J]. 无机盐工业, 2023, 55(9): 9-16. |
[4] | 卢娜娜, 秦亚茹, 马淑清, 王琪慧, 刘兵, 石成龙. 吡啶类离子液体体系对模拟盐湖老卤中锂的萃取研究[J]. 无机盐工业, 2023, 55(7): 45-50. |
[5] | 杨悦, 朱干宇, 张建波, 孟子衡, 刘鑫辉, 杨靖, 颜坤, 彭宗贵, 王秋剑, 李会泉. 电石渣旋流分离制备脱硫剂及副产石膏研究[J]. 无机盐工业, 2023, 55(5): 78-84. |
[6] | 张森,王军,陈天虎,董仕伟,徐亮,李雅倩,赵月领. 农药行业NaCl-KCl型废盐热处理研究[J]. 无机盐工业, 2023, 55(2): 106-112. |
[7] | 田壮壮, 陈建钧, 金央, 陈明, 李军, 刘代俊. 纳滤膜脱除磷酸中金属离子的实验研究[J]. 无机盐工业, 2023, 55(12): 133-139. |
[8] | 胡广寿, 李虎平, 周晚春, 李向东, 马旭花. 稀土萃取分离过程中四价铈成因探究[J]. 无机盐工业, 2023, 55(11): 64-69. |
[9] | 冀颖, 张颖, 侯雪超, 朱晓峰, 姜润, 彭文娟, 孙广东, 吕龙. 钛系吸附剂在西藏碳酸盐型盐湖中的应用研究[J]. 无机盐工业, 2023, 55(11): 70-77. |
[10] | 于建国,孙庆,裘晟波,张以任,陈君. 支撑国家新能源战略发展的锂资源开发[J]. 无机盐工业, 2023, 55(1): 1-14. |
[11] | 乜贞,伍倩,丁涛,卜令忠,王云生,余疆江,侯献华. 中国盐湖卤水提锂产业化技术研究进展[J]. 无机盐工业, 2022, 54(10): 1-12. |
[12] | 熊家晴,张宇,朱俊国. 双重兑卤法生产低钠光卤石工艺研究[J]. 无机盐工业, 2021, 53(8): 44-49. |
[13] | 张欣,张丽. 铝铁电极电絮凝法处理镀镉废水的研究[J]. 无机盐工业, 2021, 53(8): 87-90. |
[14] | 孙振海,李滨,郭春垒,臧甲忠,李犇,范景新,汪洋. 介孔二氧化硅合成及其吸附分离性能研究[J]. 无机盐工业, 2021, 53(7): 68-72. |
[15] | 马丽,孟永涛,毕秋艳,房晓宇,关云山. 盐湖高锂卤水中硫酸根的分离与锂的迁移[J]. 无机盐工业, 2021, 53(6): 150-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|