无机盐工业 ›› 2022, Vol. 54 ›› Issue (7): 1-9.doi: 10.19964/j.issn.1006-4990.2022-0051
• 综述与专论 • 下一篇
收稿日期:
2022-01-26
出版日期:
2022-07-10
发布日期:
2022-07-14
作者简介:
季超(1983— ),男,博士,工程师,主要研究方向为分子筛催化材料的合成;E-mail:基金资助:
JI Chao(),WU Luming(
),LI Bin,ZANG Jiazhong,YU Haibin
Received:
2022-01-26
Published:
2022-07-10
Online:
2022-07-14
摘要:
甲醇制烯烃(MTO)被认为是最有希望以煤或天然气为原料替代石油制取烯烃的技术路线。具有CHA结构的SAPO-34分子筛是MTO反应生产乙烯和丙烯最理想的催化剂,但在甲醇转化过程中,芳香烃类中间体受到SAPO-34分子筛八元环微孔结构的限制,使催化剂孔道堵塞并覆盖其酸性位点,造成催化剂积炭失活。为了提高SAPO-34分子筛催化剂的寿命和低碳烯烃的选择性,改善传质并延缓焦炭的沉积至关重要。从构建多级孔结构、减小晶粒尺寸及调控分子筛酸性3个方面出发,总结了SAPO-34分子筛在MTO反应中的研究进展,并对今后催化剂的粒度、孔尺寸、酸性质等方向的改进及发展进行了展望。
中图分类号:
季超,武鲁明,李滨,臧甲忠,于海斌. 甲醇制烯烃催化剂SAPO-34分子筛的改性研究进展[J]. 无机盐工业, 2022, 54(7): 1-9.
JI Chao,WU Luming,LI Bin,ZANG Jiazhong,YU Haibin. Research progress on modification of SAPO-34 as catalyst for methanol to olefins[J]. Inorganic Chemicals Industry, 2022, 54(7): 1-9.
表1
不同催化剂的MTO反应的活性结果
晶种用的模板剂(晶种尺寸) | 模板剂(产品尺寸) | 合成方法 [n(SiO2)/n(Al2O3)] | 空速(温度) | 寿命(选择性) |
---|---|---|---|---|
四乙基氢氧化铵[ | 三乙胺(板状结构1.5 μm×0.5 μm) | 干凝胶转化法(0.3) | 3 h-1(450 ℃) | 180 min(87%) |
四乙基氢氧化铵[ | 四乙基氢氧化铵(片状结构, 约为200 nm×200 nm) | 快速加热/水热合 成(0.6) | 2 h-1(450 ℃) | 600 min(80%) |
四乙基氢氧化铵[ | 吗啡啉(300~700 nm) | 水热合成 | 4 h-1(450 ℃) | 166 min(84%) |
四乙基氢氧化铵[ | 三乙胺(立方块,200~800 nm) | 水热合成(0.3) | 2 h-1(425 ℃) | 396 min(82%) |
四乙基氢氧化铵[ | 四乙基氢氧化铵 (立方块,300~800 nm) | 水热合成(0.4) | 2 h-1(400 ℃) | 586 min(85%) |
二乙胺(4~8 μm)[ | 三乙胺(50~350 nm) | 母液中水热再晶化(0.23) | 4 h-1(450 ℃) | 258 min(83%) |
Zn修饰的SAPO-34(3~5 μm)[ | SAPO-34(3~5 μm) [n(SiO2)/n(Al2O3)= 0.4,n(P2O5)/n(Al2O3)=0.8] | 离子交换成氢型SAPO-34 | 4.24 h-1(500 ℃) | 100 min[x(乙烯)=50%;x(乙烯+丙烯)=75%;n(乙烯)/n(丙烯)=2.0] |
碳材料作为硬模板[ | 吗啡啉(30~50 μm) | 水热合成(0.6) | 4 h-1(470 ℃) | 300 min |
F127非离子表面活性剂[ | 三乙胺(1.5 μm) | 水热合成(0.8) | — | 664.2 min(84%) |
氟离子[n(F)/n(Si)=0.1][ | 三乙胺(5 μm) | 水热合成(1/0.84) | — | —(82%) |
1 | STÖCKER M.Methanol-to-hydrocarbons:Catalytic materials and their behavior[J].Microporous and Mesoporous Materials,1999,29(1/2):3-48. |
2 | LEE M K, KIM J, RYU J H,et al.Modeling of reaction and deactivation kinetics in methanol-to-olefins reaction on SAPO-34[J].Industrial & Engineering Chemistry Research,2019,58(29): |
13227-13238. | |
3 | YANG Guoju, HAN Ji, HUANG Yujun,et al.Busting the efficiency of SAPO-34 catalysts for the methanol-to-olefin conversion by post-synthesis methods[J].Chinese Journal of Chemical Engineering,2020,28(8):2022-2027. |
4 | YANG Miao, FAN Dong, WEI Yingxu,et al.Recent progress in methanol-to-olefins(MTO) catalysts[J].Advanced Materials,2019,31(50).Doi:10.1002/adma.201902181 . |
5 | LIU Zhongmin, LIANG Juan.Methanol to olefin conversion catalysts[J].Current Opinion in Solid State and Materials Science,1999,4(1):80-84. |
6 | GUISNET M, COSTA L, RIBEIRO F R.Prevention of zeolite deactivation by coking[J].Journal of Molecular Catalysis A:Chemical,2009,305(1/2):69-83. |
7 | MORES D,KORNATOWSKI J, OLSBYE U,et al.Coke formation during the methanol-to-olefin conversion:in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity[J].Chemistry:A European Journal,2011,17(10):2874-2884. |
8 | YARULINA I, BAILLEUL S, PUSTOVARENKO A,et al.Suppression of the aromatic cycle in methanol-to-olefins reaction over ZSM- |
9 | by post-synthetic modification using calcium[J].ChemCatChem,2016,8(19):3057-3063. |
10 | VALTCHEV V, MAJANO G, MINTOVA S,et al.Tailored crystalline microporous materials by post-synthesis modification[J].Che- mical Society Reviews,2013,42(1):263-290. |
11 | BARBERA K, BONINO F, BORDIGA S,et al.Structure-deactivation relationship for ZSM-5 catalysts governed by framework defects[J].Journal of Catalysis,2011,280(2):196-205. |
12 | SHANG S C, CHEN W B, YANG L,et al.Effect of morphology and acidity control of Ni-SAPO-34 zeolite on catalytic performance of dimethyl ether to olefins[J].Journal of Solid State Che- mistry,2021,303.Doi:10.1016/j.jssc.2021.122503 . |
13 | CHEN D, MOLJORD K, FUGLERUD T,et al.The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction[J].Microporous and Mesoporous Materials,1999,29(1/2):191-203. |
14 | NISHIYAMA N, KAWAGUCHI M, HIROTA Y,et al.Size control |
SAPO- of 34 crystals and their catalyst lifetime in the methanol- | |
to-olefin reaction[J].Applied Catalysis A:General,2009,362(1/2):193-199. | |
15 | JANG H G, MIN H K, LEE J K,et al.SAPO-34 and ZSM-5 nanocrystals′ size effects on their catalysis of methanol-to-olefin reactions[J].Applied Catalysis A:General,2012,437/438:120- |
130 | |
17 | YANG Miao, TIAN Peng, WANG Chan,et al.A top-down approach |
to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity[J].Chemical Communications,2014,50(15):1845-1847. | |
16 | SUN Qiming, XIE Zaiku, YU Jihong.The state-of-the-art synthetic |
strategies for SAPO- 34 zeolite catalysts in methanol-to-olefin con- | |
version[J].National Science Review,2017,5(4):542-558. | |
19 | ZHONG Jiawei, HAN Jingfeng, WEI Yingxu,et al.Recent advan- |
ces of the nano-hierarchical SAPO- 34 in the methanol-to-ole- | |
fin(MTO) reaction and other applications[J].Catal.Sci.Technol.,2017,7(21):4905-4923. | |
18 | LEE Y J, BAEK S C, JUN K W.Methanol conversion on SAPO-34 catalysts prepared by mixed template method[J].Applied Catalysis A:General,2007,329:130-136. |
21 | WANG Pengfei, LV Ailing, HU Jie,et al.The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction[J].Microporous and Mesoporous Materials,2012,152:178-184. |
20 | MASOUMI S, TOWFIGHI J, MOHAMADALIZADEH A,et al.Tri- |
templates synthesis of SAPO- 34 and its performance in MTO reaction by statistical design of experiments[J].Applied Catalysis A:General,2015,493:103-111. | |
23 | ASKARI S, SEDIGHI Z, HALLADJ R.Rapid synthesis of SAPO-34 nanocatalyst by dry gel conversion method templated with morphline:Investigating the effects of experimental parameters[J].Microporous and Mesoporous Materials,2014,197:229-236. |
22 | HIROTA Y, MURATA K, TANAKA S,et al.Dry gel conversion synthesis of SAPO-34 nanocrystals[J].Materials Chemistry and Physics,2010,123(2/3):507-509. |
25 | RIMAZ S, HALLADJ R, ASKARI S.Synthesis of hierarchal SAPO-34 nano catalyst with dry gel conversion method in the presence of carbon nanotubes as a hard template[J].Journal of Colloid and Interface Science,2016,464:137-146. |
24 | SUN Qiming, MA Yanhang, WANG Ning.High performance nano- |
sheet-like silicoaluminophosphate molecular sieves:Synthesis,3D EDT structural analysis and MTO catalytic studies[J].Journal of Materials Chemistry A:Materials for Energy and Sustainability,2014,2(42):17828-17839. | |
27 | ÁLVARO-MUN~OZ T, SASTRE E, MÁRQUEZ-ÁLVAREZ C.Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reac- |
tion[J].Catalysis Science & Technology,2014,4:4330-4339. | |
26 | YANG S T, KIM J Y, CHAE H J,et al.Microwave synthesis of mesoporous SAPO-34 with a hierarchical pore structure[J].Materials Research Bulletin,2012,47(11):3888-3892. |
29 | ASKARI S, HALLADJ R.Effects of ultrasound-related variables on sonochemically synthesized SAPO-34 nanoparticles[J].Journal of Solid State Chemistry,2013,201:85-92. |
28 | LI Zhibin, MARTÍNEZ-TRIGUERO J, CONCEPCIÓN P,et al.Methanol to olefins:Activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribu- |
tion[J].Physical Chemistry Chemical Physics:PCCP,2013, | |
15(35):14670-14680. | |
31 | SUN Chao, WANG Yaquan, ZHAO Aijuan,et al.Synthesis of nano-sized SAPO-34 with morpholine-treated micrometer-seeds and their catalytic performance in methanol-to-olefin reactions[J].Applied Catalysis A:General,2020,589.Doi:10.1016/j.apcata. 2019.117314 . |
30 | SUN Qiming, WANG Ning, GUO Guanqi,et al.Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance[J].Chemical Communications(Cambridge,Engla- nd),2015,51(91):16397-16400. |
33 | SUN Qiming, WANG Ning, BAI Risheng,et al.Seeding induced nano-sized hierarchical SAPO-34 zeolites:Cost-effective synthesis and superior MTO performance[J].Journal of Materials Chemistry A,2016,4(39):14978-14982. |
32 | CHEN Guangrui, SUN Qiming, YU Jihong.Nanoseed-assisted syn- |
thesis of nano-sized SAPO- 34 zeolites using morpholine as the sole template with superior MTO performance[J].Chemical Communications,2017,53(100):13328-13331. | |
35 | SCHMIDT F, PAASCH S, BRUNNER E,et al.Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J].Microporous and Mesoporous Materials,2012,164:214-221. |
34 | JUN J W, JEON J, KIM C U,et al.Synthesis of mesoporous SAPO-34 molecular sieves and their applications in dehydration of butanols and ethanol[J].Journal of Nanoscience and Nanotechnology,2013,13(4):2782-2788. |
37 | SOLTANALI S, DARIAN J T.Synthesis of mesoporous SAPO-34 catalysts in the presence of MWCNT,CNF,and GO as hard templates in MTO process[J].Powder Technology,2019,355:127- |
134 | |
36 | SUN Qiming, WANG Ning, XI Dongyang,et al.Organosilane sur- |
factant-directed synthesis of hierarchical porous SAPO- 34 catalysts with excellent MTO performance[J].Chemical Communications(Cambridge,England),2014,50(49):6502-6505. | |
40 | WANG Chan, YANG Miao, TIAN Peng,et al.Dual template-directed synthesis of SAPO-34 nanosheet assemblies with impro- |
ved stability in the methanol to olefins reaction[J].Journal of Materials Chemistry A,2015,3(10):5608-5616. | |
38 | CHEN Huiyong, WANG Manyun, YANG Mengfei,et al.Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO- |
42 | zeolites with improved MTO catalytic performance[J].Journal of Materials Science,2019,54(11):8202-8215. |
39 | SINGH A K, YADAV R, A.Synthesis SAKTHIVEL,characterization,and catalytic application of mesoporous SAPO- 34 (MESO-SAPO-34) molecular sieves[J].Microporous and Mesoporous Materials,2013,181:166-174. |
44 | KONG Lingtao, JIANG Zhang, ZHAO Jigang,et al.The synthesis of hierarchical SAPO-34 and its enhanced catalytic performance in chloromethane conversion to light olefins[J].Catalysis Letters,2014,144(9):1609-1616. |
41 | CUI Yu, ZHANG Qiang, HE Jie,et al.Pore-structure-mediated hierarchical SAPO-34:Facile synthesis,tunable nanostructure,and catalysis applications for the conversion of dimethyl ether into olefins[J].Particuology,2013,11(4):468-474. |
46 | RAZAVIAN M, FATEMI S.Fabrication of SAPO-34 with tuned mesopore structure[J].Zeitschrift Für Anorganische Und Allgemeine Chemie,2014,640(10):1855-1859. |
43 | WANG Fei, SUN Long, CHEN Chuanling,et al.Polyethyleneimine templated synthesis of hierarchical SAPO-34 zeolites with uniform mesopores[J].RSC Adv.,2014,4(86):46093-46096. |
48 | REN Shu, LIU Guojuan, WU Xian,et al.Enhanced MTO performance over acid treated hierarchical SAPO-34[J].Chinese Journal of Catalysis,2017,38(1):123-130. |
45 | JIN Wenlong, WANG Baojie, Pengfei TUO,et al.Selective desilication,mesopores formation,and MTO reaction enhancement via citric acid treatment of zeolite SAPO-34[J].Industrial & Engineering Chemistry Research,2018,57(12):4231-4236. |
50 | VERBOEKEND D, PÉREZ-RAMÍREZ J.Design of hierarchical zeolite catalysts by desilication[J].Catalysis Science & Technology,2011,1(6):879-890. |
47 | ABELLÓ S, BONILLA A, PÉREZ-RAMÍREZ J.Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J].Applied Catalysis A:General,2009,364(1/2):191-198. |
52 | VERBOEKEND D, MILINA M, PÉREZ-RAMÍREZ J.Hierarchical silicoaluminophosphates by postsynthetic modification:Influence of topology,composition,and silicon distribution[J].Chemistry of Materials,2014,26(15):4552-4562. |
49 | LIU Xiu, REN Shu, ZENG Gaofeng,et al.Coke suppression in MTO over hierarchical SAPO-34 zeolites[J].RSC Advances,2016,6(34):28787-28791. |
54 | PAN Yingying, CHEN Guangrui, YANG Guoju,et al.Efficient po- |
st-synthesis of hierarchical SAPO- 34 zeolites via organic amine etching under hydrothermal conditions and their enhanced MTO performance[J].Inorganic Chemistry Frontiers,2019,6(5):1299- | |
1303. | |
51 | VALTCHEV V, BALANZAT E, MAVRODINOVA V,et al.High energy ion irradiation-induced ordered macropores in zeolite crys- |
tals[J].Journal of the American Chemical Society,2011,133(46):18950-18956. | |
56 | PŘECH J, BOZHILOV K N, FALLAH J EL,et al.Fluoride etching opens the structure and strengthens the active sites of the layered ZSM-5 zeolite[J].Microporous and Mesoporous Materials,2019,280:297-305. |
53 | QIN Zhengxing, HAFIZ L, SHEN Yanfeng,et al.Defect-engineered |
zeolite porosity and accessibility[J].Journal of Materials Chemistry A,2020,8(7):3621-3631. | |
58 | QIN Zhengxing, PINARD L, BENGHALEM M A,et al.Preparation of single-crystal“house-of-cards”-like ZSM-5 and their performance in ethanol-to-hydrocarbon conversion[J].Chemistry of Materials,2019,31(13):4639-4648. |
55 | CHEN Xiaoxin, VICENTE A, QIN Zhengxing,et al.The preparation of hierarchical SAPO-34 crystals via post-synthesis fluoride etching[J].Chemical Communications(Cambridge,England),2016,52(17):3512-3515. |
60 | CHEN Xiaoxin, XI Dongyang, SUN Qiming,et al.A top-down approach to hierarchical SAPO-34 zeolites with improved selectivity of olefin[J].Microporous and Mesoporous Materials,2016,234:401-408. |
57 | WU Jinxiong, ZHAO Huiru, LI Niu,et al.Fluorine-free crystallization of triclinic AlPO4-34[J].CrystEngComm,2012,14(24):8671-8676. |
62 | DAI Weili, CAO Ge, YANG Liu,et al.Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density[J].Catalysis Science & Technology,2017,7(3):607-618. |
59 | GAO Beibei, YANG Miao, QIAO Yuyan,et al.A low-temperature |
approach to synthesize low-silica SAPO- 34 nanocrystals and their | |
application in the methanol-to-olefins(MTO) reaction[J].Catalysis Science & Technology,2016,6(20):7569-7578. | |
64 | ZHONG Jiawei, HAN Jingfeng, WEI Yingxu,et al.Enhancing ethylene selectivity in MTO reaction by incorporating metal species in the cavity of SAPO-34 catalysts[J].Chinese Journal of Catalysis,2018,39(11):1821-1831. |
61 | JIANG Zhang, SHEN Benxian, ZHAO Jigang,et al.Enhancement of catalytic performances for the conversion of chloromethane to light olefins over SAPO-34 by modification with metal chlori |
de[J].Industrial & Engineering Chemistry Research,2015, | |
54(49):12293-12302. | |
66 | MIRZA K, GHADIRI M, HAGHIGHI M,et al.Hydrothermal synthesize of modified Fe,Ag and K-SAPO-34 nanostructured catalysts used in methanol conversion to light olefins[J].Microporous and Mesoporous Materials,2018,260:155-165. |
63 | SALIH H, MURAZA O, ABUSSAUD B,et al.Catalytic enhancement of SAPO-34 for methanol conversion to light olefins using in situ metal incorporation[J].Industrial & Engineering Chemistry Research,2018,57(19):6639-6646. |
68 | DI Chunyu, LI Xiaofeng, WANG Ping,et al.Green and efficient dry gel conversion synthesis of SAPO-34 catalyst with plate-like morphology[J].Petroleum Science,2017,14(1):203-213. |
65 | SUN Chao, WANG Yaquan, CHEN Hengbao,et al.Seed-assisted synthesis of hierarchical SAPO-18/34 intergrowth and SAPO-34 zeolites and their catalytic performance for the methanol-to-olefin reaction[J].Catalysis Today,2020,355:188-198. |
70 | HUANG Huiwen, YU Mengyun, ZHANG Qiang,et al.Insights into NH4-SAPO-34 preparation procedure:Effect of the number of ammonium exchange times on catalytic performance of Zn-modified SAPO-34 zeolite for methanol to olefin reaction[J].Microporous and Mesoporous Materials,2020,295.Doi:10.1016/j.micromeso.2019.109971 . |
67 | MA Mingming, ZHAO Xiaoyu, WANG Xiaotong,et al.Synthesis of small-sized SAPO-34 assisted by pluronic F127 nonionic surfactant and its catalytic performance for methanol to olefins (MTO)[J].Catalysis Communications,2020,133.Doi:10.1016/j.catcom.2019.105839 . |
72 | LIU Yuanlin, WANG Lingzhi, ZHANG Jinlong.Preparation of floral mesoporous SAPO-34 with the aid of fluoride ion[J].Materials Letters,2011,65(14):2209-2212. |
[1] | 朱继成, 杨期鑫, 梁浩权, 王增坤, 欧阳富贵, 邸婧, 盖希坤. 限域型催化剂Ni@S2对甲烷干重整反应性能影响[J]. 无机盐工业, 2025, 57(2): 138-146. |
[2] | 王健捷, 束小龙, 肖霞, 王鹏, 范晓强, 孔莲, 解则安, 赵震. 多级孔花状ZSM-5分子筛的合成及其正辛烷催化裂解反应性能研究[J]. 无机盐工业, 2024, 56(8): 139-146. |
[3] | 韩文华, 洪鲁伟, 李滨, 周微, 刘冠锋, 王银斌. 晶种法制备多级孔ZSM-5分子筛的研究[J]. 无机盐工业, 2024, 56(5): 128-134. |
[4] | 李江朋, 张慧斌. 三维多孔LaFeO3/CeO2/SrTiO3光芬顿和光催化协同脱色亚甲基蓝[J]. 无机盐工业, 2024, 56(5): 141-148. |
[5] | 王超, 宋国良, 肖寒. THFS-2硫化型重整预加氢催化剂的工业应用[J]. 无机盐工业, 2024, 56(5): 94-100. |
[6] | 靳苏娜, 吕瑞亮. 非均相催化臭氧氧化处理工业废水的研究进展[J]. 无机盐工业, 2024, 56(3): 28-38. |
[7] | 陈星亮, 范文娟, 常会, 黄海平, 蒋志强. Fe3+协同Ni基金属-有机框架提升电催化析氧反应活性的研究[J]. 无机盐工业, 2024, 56(2): 152-158. |
[8] | 侯章贵, 吴冲冲, 张斯然. 二氧化碳逆水煤气变换的研究进展[J]. 无机盐工业, 2024, 56(11): 105-115. |
[9] | 马以宏, 陈兴涛, 汤雷. 化学混凝-TiO2/g-C3N5光催化降解处理印刷废水[J]. 无机盐工业, 2024, 56(10): 151-158. |
[10] | 金声势, 刘凯杰, 刘秋文, 张一波, 杨向光. 磷酸改性CeO2纳米棒负载Pt催化剂催化丙烷燃烧性能的研究[J]. 无机盐工业, 2024, 56(1): 141-148. |
[11] | 郭子妮, 屈吉艳, 罗建洪. 不同禁带宽度催化剂协同低温等离子体氧化NO x[J]. 无机盐工业, 2023, 55(9): 126-133. |
[12] | 刘伟, 许岩, 陈永生, 孙春晖, 张景成, 朱金剑, 刘洋. 碱土金属对铜/三氧化二铝酯加氢催化剂性能的影响[J]. 无机盐工业, 2023, 55(9): 140-144. |
[13] | 马超, 胡洁琼, 谢明, 陈永泰, 张巧, 陈松, 方继恒, 邱乐祺. 铂金镍纳米合金的制备研究进展[J]. 无机盐工业, 2023, 55(9): 26-32. |
[14] | 杨博, 梁志燕, 刘文元, 曹嘉真, 刘昕玥, 邢明阳. 钼基催化材料在水污染控制领域的应用研究进展[J]. 无机盐工业, 2023, 55(8): 1-12. |
[15] | 马致远, 吕大伟, 王辉, 靳南南, 朱金剑, 张景成. THDS-2/3型催化剂在加氢精制装置扩能改造中的工业应用[J]. 无机盐工业, 2023, 55(8): 140-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|