[1] |
GREEN M A, BREMNER S P. Energy conversion approaches and materials for high-efficiency photovoltaics[J]. Nature Material, 2017, 16(1):23-34.
|
[2] |
林昇华, 张景, 艾玲, 等. 光伏玻璃减反射膜的研究进展[J]. 材料导报, 2019, 33(11):3588-3595.
|
[3] |
官燕玲, 张豪, 闫旭洲, 等. 灰尘覆盖对光伏组件性能影响的原位实验研究[J]. 太阳能学报, 2016, 37(8):1944-1950.
|
[4] |
ABASS K I, AL-ZUBAIDI D S M, AL-WAELI A A K. Effect of pollution and dust on PV performance[J]. International Journal of Civil,Mechanical and Energy Science(IJCMES), 2017, 3(4):181-185.
|
[5] |
ME P, JAYAMADHURI T. Effects of dust on the performance of solar panel and improving the performance by using arm controller and gear motor based cleaning method[J]. International Journal of Innovative Science,Engineering & Technology, 2015, 2(9):329-334.
|
[6] |
赵明智, 张旭, 苗一鸣, 等. 沙漠环境沙尘覆盖下的光伏组件输出特性研究[J]. 太阳能学报, 2018, 39(3):744-748.
|
[7] |
SAYYAH A, HORENSTEIN M N, MAZUMDER M K. Energy yield loss caused by dust deposition on photovoltaic panels[J]. Solar Energy, 2014, 107:576-604.
|
[8] |
VERMA L K, SAKHUJA M, SON J, et al. Self-cleaning and antireflective packaging glass for solar modules[J]. Renewable Energy, 2011, 36(9):2489-2493.
|
[9] |
LIN Y, HE J. Recent progress in antireflection and self-cleaning technology-from surface engineering to functional surfaces[J]. Progress in Materials Science, 2014, 61:94-143.
|
[10] |
李建生, 刘炳光, 董学通. 用于提高太阳能电池效率的无机纳米材料的研究进展[J]. 无机盐工业, 2014, 46(9):1-6.
|
[11] |
MOZUMDER M S, MOURAD A H I, PERVEZ H, et al. Recent developments in multifunctional coatings for solar panel applications:A review[J]. Solar Energy Materials and Solar Cells, 2019, 189(11):75-102.
|
[12] |
潘胜. 光伏玻璃防尘性能研究[J]. 太阳能, 2020(4):23-28.
|
[13] |
BAHATTAB M A, ALHOMOUDI I A, ALHUSSAINI M I, et al. Anti-soiling surfaces for PV applications prepared by sol-gel processing:Comparison of laboratory testing and outdoor exposure[J]. Solar Energy Materials and Solae Cells, 2016, 157:422-428.
|
[14] |
HAGER P J, SCHLECHTE J S. Silica coating for enhanced hydrophilicity:US,20130071649[P]. 2013-03-21.
|
[15] |
AZANI A, HALIN D S C, RAZAK K A, et al. Recent graphene oxide/TiO2 thin film based on self-cleaning application[J]. IOP Conference Series:Materials Science and Engineering, 2019, 572.Doi: 10.1088/1757-899X/572/1/012079.
|
[16] |
李建生, 刘炳光, 王韬, 等. 棒状纳米二氧化硅水溶胶制备和镀膜研究[J]. 无机盐工业, 2016, 48(3):34-38.
|
[17] |
GANGULY P, BYRNE C, BREEN A, et al. Antimicrobial activity of photocatalysts:Fundamentals,mechanisms[J]. Applied Catalysis B:Environmental, 2018, 225:51-75.
|
[18] |
黄宇, 张静, 刘燕, 等. 光催化薄膜的亲水性及其应用[J]. 地球环境学报, 2018, 9(5):415-433.
|
[19] |
李建生, 刘炳光, 王少杰, 等. 玻璃负载纳米TiO2/SiO2 膜的制备和光催化性能[J]. 工业水处理, 2016, 36(5):60-63.
|
[20] |
李建生, 韩璐, 张发荣, 等. 一种可见光催化的自清洁材料的制备方法:中国,2021109447256[P]. 2021-08-17.
|
[21] |
GARLISI C, TREPCI E, LI X, et al. Multilayer thin film structures for multifunctional glass:Self-cleaning,antireflective and energysaving properties[J]. Applied Energy, 2020, 264.Doi: 10.1016/j.apenergy.2020.114697.
|
[22] |
张发荣, 李建生, 尹浩男, 等. 一种太阳电池玻璃低效减反射膜的增效方法:中国,108110064B[P]. 2019-11-08.
|
[23] |
赵琪, 孙赫阳, 胡子文, 等. 二氧化钛基复合光催化材料的制备及应用进展[J]. 功能材料与器件学报, 2020, 26(2):83-88.
|
[24] |
HIGASHINO S, MIYAKE M, IKENOUE T. Formation of a photocatalytic WO3 surface layer on electrodeposited Al-W alloy coatings by selective dissolution and heat treatment[J]. Scientific Reports, 2019, 9.Doi: 10.1038/s41598-019-52178-6.
|
[25] |
SIMON S M, CHANDRAN A, GEORGE G, et al. Development of thick superhydrophilic TiO2-ZrO2 transparent coatings realized through the inclusion of poly(methyl methacrylate) and pluronic-F127[J]. ACS Omega, 2018, 3:14924-14932.
|
[26] |
MADKOUR M, SAGHEER F A. Au/ZnS and Ag/ZnS nanoheterostructures as regenerated nanophotocatalysts for photocatalytic degradation of organic dyes[J]. Optical Materials Express, 2017, 7(1):158-169.
|
[27] |
TALINUNGSANG, UPADHAYA D, KUMAR P, et al. Superhydrophilicity of photocatalytic ZnO/SnO2 heterostructure for self-cleaning applications[J]. Journal of Sol-Gel Science and Technology, 2019, 92:575-584.
|
[28] |
RAMADHANI J P, WAHYUNINGSIH S, RAMELAN A H. Improving method of TiO2-Fe2O3 composite materials for self-cleaning glass preparation[J]. Materials Science and Engineering, 2019, 578.Doi: 10.1088/1757-899X/578/1/012029.
|
[29] |
LATTHE S S, SUDHAGAR P, RAVIDHAS C, et al. Self-cleaning and superhydrophobic CuO coating by jet-nebulizer spray pyrolysis technique[J]. CrystEngComm, 2015, 17:2624-2628.
|
[30] |
GAO X, LIU X X, ZHU Z M, et al. Enhanced visible light photocatalytic performance of CdS sensitized TiO2 nanorod arrays decorated with Au nanoparticles as electron sinks[J]. Scientific Reports, 2017, 7.Doi: 10.1038/s41598-017-01124-5.
|
[31] |
NAKAYAMA K, HIRAGA T, ZHU C Y, et al. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes[J]. Applied Surface Science, 2017, 423:968-976.
|
[32] |
BARRECA D, GRI F, GASPAROTTO A, et al. Multi-functional MnO2 nanomaterials for photoactivated applications by a plasmaassisted fabrication route[J]. Nanoscale, 2019, 11:98-108.
|
[33] |
HANAEI H, ASSADI M K, SAIDUR R. Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes(CNTs) into solar cells:A review[J]. Renewable and Sustainable Energy Reviews, 2016, 59:620-635.
|
[34] |
李建生, 于韶梅, 王欣, 等. 石墨烯制备中的无机氧化剂和无机还原剂[J]. 无机盐工业, 2020, 52(8):6-10.
|
[35] |
李鹏. 技术创新推动光伏行业变革[J]. 太阳能, 2018(4):73-74.
|
[36] |
王子韩. 一种高效自清洁石墨烯涂层太阳能光伏组件及制造方法:中国,104916711B[P]. 2017-07-28.
|
[37] |
孙立涛, 毕恒昌, 万树. 一种制备超疏水、耐磨、导电且具有自清洁功能膜的方法:中国,105482136B[P]. 2017-12-22.
|
[38] |
杨欣, 崔淑杰, 王玉琪, 等. 一种光伏玻璃用功能涂层的制备方法:中国,112374767A[P]. 2021-02-19.
|
[39] |
祖晓冬, 李青超, 李建生, 等. 一种石墨烯掺杂自清洁玻璃镀膜液的制备方法:中国,109385122A[P]2019-02-26.
|
[40] |
王欣, 李仕增, 李建生, 等. 一种石墨烯掺杂玻璃镀膜液及其制备方法:中国,109206017A[P]2019-01-15.
|
[41] |
凡甜甜, 郭燕云, 张发荣, 等. 一种石墨烯改性太阳能电池自清洁减反射玻璃:中国,202110764584X[P]. 2021-07-07.
|
[42] |
祖晓冬, 张发荣, 郭燕云, 等. 一种石墨烯基超疏水自清洁玻璃的制备方法:中国,2021109507505[P]. 2021-08-18.
|
[43] |
POSA V R, ANNAVARAM V, KODURU J R, et al. Preparation of graphene-TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation[J]. J.Exp.Nanosci., 2016, 11:722-736.
|
[44] |
ZABIHI F, YAZDI M R A, ESLAMIAN M. Photocatalytic grapheneTiO2 thin films fabricated by low-temperature ultrasonic vibrationassisted spin and spray coating in a sol-gel process[J]. Catalysts, 2017, 7.Doi: 10.3390/catal7050136.
|
[45] |
VALLEJO W, RUEDA A, URIBE C D. Photocatalytic activity of graphene oxide-TiO2 thin films sensitized by natural dyes extracted from bactris guineensis[J]. Royal Society Open Science, 2019, 3. Doi: 10.1098/rsos.181824.
|
[46] |
NGUYEN D K V, NGUYEN K D V. Magnetite nanoparticles-TiO2 nanoparticles-graphene oxide nanocomposite:Synjournal,characterization and photocatalytic degradation for Rhodamine-B dye[J]. AIMS Materials Science, 2020, 7(3):288-301.
|
[47] |
TIMOUMI A. Reduction band gap energy of TiO2 assembled with graphene oxide nanosheets[J]. Graphene, 2018, 7:31-38.
|
[48] |
PARK J. Photocatalytic performance of graphene-TiO2 hybrid nanomaterials under visible light[J]. Korean Inst.Electr.Electron.Mater.Eng.March, 2019, 32(2):161-164.
|
[49] |
DIAA M, HASSABO A G. Self-cleaning properties of cellulosic fabrics:A review[J]. Biointerface Research in Applied Chemistry, 2022, 12(2):1847-1855.
|
[50] |
WANG P, YAO T, SUN B, et al. A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated graphene[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017.Doi: 10.1016/j.colsurfa.2016.11.002.
|