[1] |
Scholes C A, Smith K H, Kentish S E, et al. CO2 capture from pre-combustion processes-Strategies for membrane gas separation[J]. International Journal of Greenhouse Gas Control, 2010, 4(5):739-755.
|
[2] |
Liu Y F, Wang Z, Yang H L, et al. 3-Phenylethynyl phthalimide end-capped imide oligomers and the cured polymers[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2008, 46(12):4227-4235.
|
[3] |
Zhao S, Wang Z, Qiao Z H, et al. Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules[J]. Journal of Materials Chemistry A, 2013, 1(2):246-249.
|
[4] |
Kanehashi S, Chen G Q, Scholes C A, et al. Enhancing gas permea-bility in mixed matrix membranes through tuning the nanoparticle properties[J]. Journal of Membrane Science, 2015, 482(5):49-55.
|
[5] |
Yu J, Wang C Q, Xiang L, et al. Enhanced C3H6/C3H8 separation per-formance in poly(vinyl acetate) membrane blended with ZIF-8 nanocrystals[J]. Chemical Engineering Science, 2018, 179(6):1-12.
|
[6] |
Li X Q, Ma L, Zhang H Y, et al. Synergistic effect of combining car-bon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation[J]. Journal of Membrane Science, 2015, 479(1):1-10.
|
[7] |
Li X F, Zhang F, Jiang H Y, et al. Amine-functionalized GO as an active and reusable acid-base bifunctional catalyst for one-pot casc-ade reactions[J]. ACS Catalysis, 2013, 4(2):394-401.
|
[8] |
陈德强, 白云翔, 张春芳, 等. Fe3O4 /PIM-1磁性混合基质膜的制备及其 O2/N2 分离性能研究[J]. 膜科学与技术, 2017, 37(4):27-37.
|
[9] |
Li Y F, Wang S F, He G, et al. Facilitated transport of small molec-ules and ions for energy-efficient membranes[J]. Chemical Society Reviews, 2015, 44(1):103-118.
|
[10] |
Zhao Y, Wang F S, Winston H, et al. Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transpo-rt[J]. Journal of Membrane Science, 2012, 4(12):132-138.
|
[11] |
Xin Q, Zhao L, Li C, et al. Enhancing the CO2 separation perfor-mance of composite membranes by the incorporation of amino acid-functionalized graphene oxide[J]. Journal of Materials Chemistry A, 2015, 3(12):6629-6641.
|
[12] |
Peng D D, Wang S F, Tian Z, et al. Facilitated transport membran-es by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation[J]. Journal of Membrane Science, 2017, 522:351-362.
|
[13] |
Xin Q P, Ma F X, Zhang L, et al. Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene oxide nanosheets for efficient gas separation[J]. Journal of Membrane Science, 2019, 586(9):23-33.
|
[14] |
Jia X L, Zhang Q, Zhao M Q, et al. Dramatic enhancements in toug-hness of polyimide nanocomposite via long-CNT-induced long-range creep[J]. Journal of Materials Chemistry, 2012, 22(14):45-58.
|
[15] |
Zambare R, Song X, Bhuvana S, et al. Ultrafast dye removal using ionic liquid-graphene oxide sponge[J]. ACS Sustainable Chemistry& Engineering, 2017, 5(7):6026-6035.
|
[16] |
Jia M M, Feng Y, Qiu J, et al. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation[J]. Separation and Purification Technology, 2019, 213(2):63-69.
|
[17] |
Wang C Y, Lan Y F, Yu W T, et al. Preparation of amino-function-alized graphene oxide/polyimide composite films with improved mechanical,thermal and hydrophobic properties[J]. Applied Sur-face Science, 2016, 362(2):11-19.
|
[18] |
Bu J Q, Yuan L, Zhang N, et al, High-efficiency adsorption of me-thylene blue dye from wastewater by a thiosemicarbazide function-alized graphene oxide composite[J]. Diamond and Related Materi-als, 2020, 101(2):67-79.
|
[19] |
Shang N Z, Feng C, Zhang H Y, et al, Suzuki-miyaura reaction ca-talyzed by graphene oxide supported palladium nanoparticles[J]. Catalysis Communications, 2013, 40(8):111-115.
|
[20] |
Huang D D, Xin Q P, Li Y Z, et al. Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation[J]. RSC Advances, 2018, 7(8):6099-6109.
|
[21] |
Liu Y, Peng D D, He G, et al, Enhanced CO2 permeability of mem-branes by incorporating polyzwitterion@CNT composite particles into polyimide matrix[J]. ACS Applied Materials & Interfaces, 2014, 6(15):13051-13060.
|
[22] |
Li X Q, Cheng Y D, Zhang H Y, et al. Efficient CO2 capture by func-tionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Applied Materi-als & Interfaces, 2015, 7(9):177-189.
|
[23] |
Cui Y, Kundalwal S I, Kumar S. Gas barrier performance of grap-hene/polymer nanocomposites[J]. Carbon, 2016, 98(3):313-333.
|
[24] |
Ge B S, Wang T, Sun H X, et al. Preparation of mixed matrix mem-branes based on polyimide and aminated graphene oxide for CO2 separation[J]. Polymers for Advanced Technologies, 2018, 29(4):1334-1343.
|
[25] |
Khan A, Klaysom C, Gahlaut A, et al. Mixed matrix membranes co-mprising of Matrimid and-SO3H functionalized mesoporous MCM-41 for gas separation[J]. Journal of Membrane Science, 2013, 47(4):73-79.
|
[26] |
Li F, Li Y, Chung T S, et al. Facilitated transport by hybrid POSS®-Matrimid®-Zn2+ nanocomposite membranes for the separation of natural gas[J]. Journal of Membrane Science, 2010, 356(3):14-21.
|
[27] |
Wang S, Tian Z Z, Feng J, et al. Enhanced CO2 separation proper-ties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane[J]. Journal of Mem-brane Science, 2015, 473(1):310-317.
|
[28] |
Zornoza B, Téllez C, Coronas J. Mixed matrix membranes compris-ing glassy polymers and dispersed mesoporous silica spheres for gas separation[J]. Journal of Membrane Science, 2011, 368(2):100-109.
|
[29] |
Zhang Y, Musselman I H, Ferraris J P, et al. Gas permeability pro-perties of Matrimid® membranes containing the metal-organic fra-mework Cu-BPY-HFS[J]. Journal of Membrane Science, 2018, 313(5):170-181.
|
[30] |
Zhang Y, Balkus K J, Musselman I H, et al. Mixed-matrix membra-nes composed of Matrimid® and mesoporous ZSM-5 nanoparticl-es[J]. Journal of Membrane Science, 2008, 325(1):28-39.
|