[1] |
Chen P, Yin D, Song P, et al. Demulsification and oil recovery from oil-in-water cutting fluid wastewater using electrochemical micromembrane technology[J]. Journal of Cleaner Production, 2020, 244(13):1-8.
|
[2] |
李威, 任瑞鹏. 石墨烯基吸油材料的研究进展[J]. 现代化工, 2017, 37(8):19-22,24.
|
[3] |
Tran V T, Xu X, Mredha M T I, et al. Hydrogel bowls for cleaning oil spills on water[J]. Water Research, 2018, 145:640-649.
|
[4] |
Gupta R K, Dunderdale G J, England M W, et al. Oil/water separa-tion techniques:A review of recent progresses and future directio-ns[J]. Journal of Materials Chemistry A, 2017, 5(31):16025-16058.
|
[5] |
刘娟, 赵亚溥, 胡斌, 等. 油水乳状液的稳定机理及其化学破乳技术的研究进展[J]. 化工进展, 2013, 32(4):891-897.
|
[6] |
杨玉洁, 陈雯雯, 张倩, 等. 聚结技术及其乳化油水分离性能[J]. 化工进展, 2019, 38(z1):10-18.
|
[7] |
Ni Long, Tian Jinyi, Song Tao, et al. Optimizing geometric parame-ters in hydrocyclones for enhanced separations:A review and persp-ective[J]. Separation & Purification Reviews, 2019, 48(1):30-51.
|
[8] |
Krebsz M, Pasinszki T, Tung T T, et al. Multiple applications of bio-graphene foam for efficient chromate ion removal and oil-water sep-aration[J]. Chemosphere, 2021, 263:1-12.
|
[9] |
Meng L, Sun Y, Gong H, et al. Research progress of the application of graphene-based materials in the treatment of water pollutants[J]. Carbon, 2019, 153:804-806.
|
[10] |
Qin L, Liu W F, Liu X G, et al. A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism[J]. New Carbon Materials, 2020, 35(5):459-485.
|
[11] |
Wang Y, Wang B, Wang J, et al. Superhydrophobic and superoleo-philic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation[J]. Journal of Hazardous Materials, 2018, 344:849-856.
|
[12] |
Zhou S, Zhou X, Hao G, et al. Property control of graphene aerogels by in situ growth of silicone polymer[J]. Applied Surface Science, 2018, 439:946-953.
|
[13] |
刁帅, 刘会娥, 陈爽, 等. 软模板法石墨烯气凝胶的可控制备及其吸油性能[J]. 化工进展, 2020, 39(7):2742-2750.
|
[14] |
Liu Y, Zhang Y, Liu Y, et al. Super heating/cooling rate enabled by microwave shock on polymeric graphene foam for high performa-nce lithium-sulfur batteries[J]. Carbon, 2021, 173:809-816.
|
[15] |
Lu Z, Xu X, Chen Y, et al. Nitrogen and sulfur co-doped grapheme aerogel with hierarchically porous structure for high-performance supercapacitors[J]. Green Energy & Environment, 2020, 5(1):69-75.
|
[16] |
Xu L, Xiao G, Chen C, et al. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction[J]. Journal of Materials Chemistry A, 2015, 3(14):7498-7504.
|
[17] |
Maleki H. Recent advances in aerogels for environmental remedia-tion applications:A review[J]. The Chemical Engineering Journal, 2016, 300:98-118.
|
[18] |
Wang S, Wang X, Shi X Y, et al. A three-dimensional polyoxomet-alate/graphene aerogel as a highly efficient and recyclable absor-bent for oil/water separation[J]. New Carbon Materials, 2021, 36(1):189-197.
|
[19] |
Chi C, Xu H, Zhang K, et al. 3D hierarchical porous graphene aero-gels for highly improved adsorption and recycled capacity[J]. Ma-terials Science and Engineering:B, 2015, 194:62-67.
|
[20] |
Chen C, Li F, Zhang Y, et al. Compressive,ultralight and fire-resi-stant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents[J]. Chemical Engineering Journal, 2018, 350:173-180.
|
[21] |
Zhang S, Liu G, Gao Y, et al. A facile approach to ultralight and recyclable 3D self-assembled copolymer/graphene aerogels for ef-ficient oil/water separation[J]. Science of the Total Environment, 2019, 694:1-11.
|
[22] |
Mi H, Jing X, Xie H, et al. Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation[J]. Chemical Engineering Journal, 2018, 337:541-551.
|
[23] |
Chen B, Ma Q, Tan C, et al. Carbon-based sorbents with three-di-mensional architectures for water remediation[J]. Small, 2015, 11(27):3319-3336.
|
[24] |
Kabiri S, Tran D N H, Altalhi T, et al. Outstanding adsorption per-formance of graphene-carbon nanotube aerogels for continuous oil removal[J]. Carbon, 2014, 80:523-533.
|
[25] |
Wan W, Zhang R, Li W, et al. Graphene-carbon nanotube aerogel as an ultra-light,compressible and recyclable highly efficient ab-sorbent for oil and dyes[J]. Environmental Science:Nano, 2016, 3(1):107-113.
|
[26] |
张凯, 闫小强, 唐自清, 等. 高吸油性三聚氰胺泡沫的制备与性能研究[J]. 河南理工大学学报:自然科学版, 2020, 39(4):155-160.
|
[27] |
Lv X, Tian D, Peng Y, et al. Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil-waterseparation[J]. Applied Surface Science, 2019, 466:937-945.
|
[28] |
Meng H, Yan T, Yu J, et al. Super-hydrophobic and super-lipophi-lic functionalized graphene oxide/polyurethane sponge applied for oil/water separation[J]. Chinese Journal of Chemical Engineering, 2018, 26(5):957-963.
|
[29] |
Xia C, Li Y, Fei T, et al. Facile one-pot synjournal of superhydropho-bic reduced graphene oxide-coated polyurethane sponge at the pre-sence of ethanol for oil-water separation[J]. Chemical Engineering Journal, 2018, 345:648-658.
|
[30] |
Zhou S, Hao G, Zhou X, et al. One-pot synjournal of robust superhy-drophobic,functionalized graphene/polyurethane sponge for effec-tive continuous oil-water separation[J]. Chemical Engineering Jo-urnal, 2016, 302:155-162.
|
[31] |
Zhang L, Li H, Lai X, et al. Thiolated graphene-based superhy-drophobic sponges for oil-water separation[J]. Chemical Engineer-ing Journal, 2017, 316:736-743.
|
[32] |
Cao Ning, Guo Jingyu, Boukherroub R, et al. Robust superhydropho-bic polyurethane sponge functionalized with perfluorinated grap-hene oxide for efficient immiscible oil/water mixture,stable emul-sion separation and crude oil dehydration[J]. Science China Tech-nological Sciences, 2019, 62(9):1585-1595.
|
[33] |
李华. 复合泡沫结构吸油材料的合成及性能研究[D]. 大连:大连理工大学, 2014.
|
[34] |
Junaidi N F D, Othman N H, Fuzil N S, et al. Recent development of graphene oxide-based membranes for oil-water separation:A re-view[J]. Separation and Purification Technology, 2021, 258:1-16.
|
[35] |
Asatekin A, Mayes A M. Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copoly-mers[J]. Environmental Science & Technology, 2009, 43(12):4487-4492.
|
[36] |
Xue Z, Liu M, Jiang L. Recent developments in polymeric super-oleophobic surfaces[J]. Journal of Polymer Science Part B:Polymer Physics, 2012, 50(17):1209-1224.
|
[37] |
袁静, 廖芳芳, 郭雅妮, 等. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1):144-155.
|
[38] |
Feng L, Zhang Z, Mai Z, et al. A super-hydrophobic and super-oleo-philic coating mesh film for the separation of oil and water[J]. Angewandte Chemie, 2004, 116(15):2046-2048.
|
[39] |
栗雯绮, 陈文革, 崔晓娟, 等. 氧化石墨烯膜的制备、改性及应用研究进展[J]. 表面技术, 2021, 50(2):199-210.
|
[40] |
Zhang X, Zhang Z, Zeng Z, et al. Superoleophobic graphene oxide/halloysite nanotube composite membranes for oil-water separa-tion[J]. Materials Chemistry and Physics, 2021, 263.Doi: 10.1016/j.matchemphys.2021.124347.
|
[41] |
Kazemi F, Jafarzadeh Y, Masoumi S, et al. Oil-in-water emulsion separation by PVC membranes embedded with GO-ZnO nanopar-ticles[J]. Journal of Environmental Chemical Engineering, 2021, 9:1-11.
|
[42] |
Peng Y, Yu Z, Li F, et al. A novel reduced graphene oxide-based composite membrane prepared via a facile deposition method for multifunctional applications:oil/water separation and cationic dyes removal[J]. Separation and Purification Technology, 2018, 200:130-140.
|
[43] |
Abdalla O, Wahab M A, Abdala A. Mixed matrix membranes con-taining aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation[J]. Journal of Environmental Che-mical Engineering, 2020, 8:1-9.
|
[44] |
An Di, Yang Ling, Wang Tingjie, et al. Separation performance of graphene oxide membrane in aqueous solution[J]. Industrial & Engineering Chemistry Research, 2016, 55(17):4803-4810.
|
[45] |
Yang S, Sha S, Lu H, et al. Graphene oxide and reduced grapheme oxide coated cotton fabrics with opposite wettability for continuous oil/water separation[J]. Separation and Purification Technology, 2021, 259:1-8.
|
[46] |
Dhumal P S, Khose R V, Wadekar P H, et al. Graphene-bentonite supported free-standing,flexible membrane with switchable wetta-bility for selective oil-water separation[J]. Separation and Purifica-tion Technology, 2021, 266:1-28.
|
[47] |
Zinadini S, Vatanpour V, Zinatizadeh A A, et al. Preparation and characterization of antifouling graphene oxide/polyethersulfone ul-trafiltration membrane:Application in MBR for dairy wastewater treatment[J]. Journal of Water Process Engineering, 2015, 7:280-294.
|
[48] |
Abdel-Karim A, Leaper S, Alberto M, et al. High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications[J]. Chemical Engi-neering Journal, 2018, 334:789-799.
|
[49] |
王彪, 刘庆旺, 范振忠, 等. 石墨烯衍生物在油水分离中的应用进展[J]. 东北石油大学学报, 2020, 44(4):66-71.
|
[50] |
Alammar A, Park S H, Williams C J, et al. Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment[J]. Journal of Membrane Science, 2020, 603:1-11.
|