1 |
李芒, 马岩峰, 赵伟, 等. “十四五”时期,中国高铁“走出去”面临的问题和应对建议[J]. 中小企业管理与科技:中旬刊, 2021(8):140-141.
|
|
LI Mang, MA Yanfeng, ZHAO Wei, et al. Problems and suggestions for China's high-speed railway “going out”in “the 14th five-year”period[J]. Management & Technology of SME, 2021(8):140-141.
|
2 |
王同军. 中国智能高铁发展战略研究[J]. 中国铁路, 2019(1):9-14.
|
|
WANG Tongjun. Study on the development strategy of China intelligent high speed railway[J]. China Railway, 2019(1):9-14.
|
3 |
国家发展和改革委员会交通运输司.国家《中长期铁路网规划》内容简介[J]. 交通运输系统工程与信息, 2005, 5(4):2- 4.
|
4 |
官珊丹, 张光伟. 铁路用铜合金接触线制造技术实践[J]. 上海有色金属, 2015, 36(3):120-123, 130.
|
|
GUAN Shandan, ZHANG Guangwei. Practising the manufacturing of copper alloy contact wire for railway[J]. Shanghai Nonferrous Metals, 2015, 36(3):120-123, 130.
|
5 |
王国迎. 电气化铁路用铜合金接触线生产过程中常见的缺陷及预防措施[J]. 有色金属加工, 2021, 50(3):39-43, 47.
|
|
WANG Guoying. Common defects and preventive measures on production of copper alloy contact wire for electrified railway[J]. Nonferrous Metals Processing, 2021, 50(3):39-43, 47.
|
6 |
刘守法, 王晋鹏, 李凡国. Zr添加及热处理对Al-Zn-Mg-Cu合金组织与性能的影响[J]. 金属热处理, 2018, 43(9):27-30.
|
|
LIU Shoufa, WANG Jinpeng, LI Fanguo. Effect of Zr addition and heat treatment on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy[J]. Heat Treatment of Metals, 2018, 43(9):27-30.
|
7 |
李强, 王茜. 高强高导铜合金的强化技术研究与展望[J]. 热加工工艺, 2009, 38(16):8-11.
|
|
LI Qiang, WANG Qian. Research and prospects on strengthening methods of high-strength and high-conductivity Cu alloy[J]. Hot Working Technology, 2009, 38(16):8-11.
|
8 |
杜淼, 张光荣. 石墨烯的制备及其应用研究进展[J]. 无机盐工业, 2019, 51(3):12-15.
|
|
DU Miao, ZHANG Guangrong. Progress in preparation and application of graphene[J]. Inorganic Chemicals Industry, 2019, 51(3):12-15.
|
9 |
杨云畅, 武斌, 王立锋, 等. 化学气相沉积法制备h-BN[J]. 科学通报, 2017, 62(20):2195-2207.
|
|
YANG Yunchang, WU Bin, WANG Lifeng, et al. The synthesis of hexagonal boron nitride via chemical vapor deposition[J]. Chinese Science Bulletin, 2017, 62(20):2195-2207.
|
10 |
黄振旭, 何欢欢, 贾潘潘, 等. 水热法制备石墨烯及对抗坏血酸电催化性能的研究[J]. 无机盐工业, 2020, 52(11):29-32.
|
|
HUANG Zhenxu, HE Huanhuan, JIA Panpan, et al. Synthesis of graphene by hydrothermal method and its electrocatalytic property on ascorbic acid[J]. Inorganic Chemicals Industry, 2020, 52(11):29-32.
|
11 |
吕吉敏, 章潇慧, 熊定邦, 等. 超高导电铜基材料的研究现状与展望[J]. 中国材料进展, 2018, 37(6):453-462.
|
|
LV Jimin, ZHANG Xiaohui, XIONG Dingbang, et al. Progress and prospect of ultra-conductive copper matrix materials[J]. Materials China, 2018, 37(6):453-462.
|
12 |
赵乃勤, 郭斯源, 张翔, 等. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9):1087-1106.
|
|
ZHAO Naiqin, GUO Siyuan, ZHANG Xiang, et al. Progress on graphene/copper composites focusing on reinforcement configuration design:A review[J]. Acta Metallurgica Sinica, 2021, 57(9):1087-1106.
|
13 |
赵亚茹, 李勇, 李焕. 石墨烯增强铜基复合材料的研究进展[J]. 表面技术, 2016, 45(5):33-40.
|
|
ZHAO Yaru, LI Yong, LI Huan. Research progress of graphene re-inforced copper matrix composites[J]. Surface Technology, 2016, 45(5):33-40.
|
14 |
梁燕, 王献辉, 李航宇, 等. 石墨烯增强铜基复合材料的制备及研究现状[J]. 稀有金属材料与工程, 2021, 50(7):2607-2619.
|
|
LIANG Yan, WANG Xianhui, LI Hangyu, et al. Fabrication and research progress of graphene reinforced Cu matrix composites[J]. Rare Metal Materials and Engineering, 2021, 50(7):2607-2619.
|
15 |
蔡粮臣, 贾均红, 杨鑫然, 等. 石墨烯增强铜基复合材料研究进展[J]. 材料科学与工艺, 2021, 29(4):87-96.
|
|
CAI Liangchen, JIA Junhong, YANG Xinran, et al. Research progress of graphene reinforced copper matrix composites[J]. Materials Science and Technology, 2021, 29(4):87-96.
|
16 |
邹晋, 张友亮, 古和今, 等. 超级铜研究现状与稀土超级铜展望[J]. 江西科学, 2021, 39(1):8-12.
|
|
ZOU Jin, ZHANG Youliang, GU Hejin, et al. Research status of ultra-copper and prospects of RE ultra-copper[J]. Jiangxi Science, 2021, 39(1):8-12.
|
17 |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
|
18 |
GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
|
19 |
凌自成, 闫翠霞, 史庆南, 等. 球磨时间对石墨烯/铜复合材料组织和性能的影响[J]. 稀有金属材料与工程, 2017, 46(1):207-212.
|
|
LING Zicheng, YAN Cuixia, SHI Qingnan, et al. Effect of ball-milling time on microstructure and mechanical properties of graphene/copper composite materials[J]. Rare Metal Materials and Engineering, 2017, 46(1):207-212.
|
20 |
SALVO C, MANGALARAJA R V, UDAYABASHKAR R, et al. Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites[J]. Journal of Alloys and Compounds, 2019, 777: 309-316.
|
21 |
WANG Jian, GUO Lina, LIN Wanming, et al. The effects of graphene content on the corrosion resistance,and electrical,thermal and mechanical properties of graphene/copper composites[J]. New Carbon Materials, 2019, 34(2):161-169.
|
22 |
LUO Haibo, SUI Yanwei, QI Jiqiu, et al. Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles[J]. Journal of Alloys and Compounds, 2017, 729: 293-302.
|
23 |
YUE Hongyan, YAO Longhui, GAO Xin, et al. Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites[J]. Journal of Alloys and Compounds, 2017, 691: 755-762.
|
24 |
RAJ R, MAROO S C, WANG E N. Wettability of graphene[J]. Nano Letters, 2013, 13(4):1509-1515.
|
25 |
WANG Shiren, ZHANG Yue, ABIDI N, et al. Wettability and surface free energy of graphene films[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2009, 25(18):11078-11081.
|
26 |
HWANG J, YOON T, JIN S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process[J]. Advanced Materials, 2013, 25(46):6724-6729.
|
27 |
YANG Ziyue, WANG Lidong, LI Jie, et al. Lateral size effect of reduced graphene oxide on properties of copper matrix composites[J]. Materials Science and Engineering:A, 2021, 820.Doi:10.1016/j.msea.2021.141579 .
|
28 |
WEI Xia, TAO Jingmei, LIU Yichun, et al. High strength and electrical conductivity of copper matrix composites reinforced by carbon nanotube-graphene oxide hybrids with hierarchical structure and nanoscale twins[J]. Diamond and Related Materials, 2019, 99.Doi:10.1016/j.diamond.2019.107537 .
|
29 |
LIU Jituo, WANG Xianhui, LIU Jia, et al. Improved mechanical properties of Ni-rGO/Cu composites prepared by molecular-level mixing[J]. Applied Physics A, 2022, 128(2):1-11.
|
30 |
HAN Tielong, LI Jiajun, ZHAO Naiqin, et al. Fabrication of graphene nanoplates modified with nickel nanoparticles for reinforcing copper matrix composites[J]. Acta Metallurgica Sinica:English Letters, 2020, 33(5):643-648.
|
31 |
WU Mingliang, HOU Baosen, SHU Shengcheng, et al. High oxidation resistance of CVD graphene-reinforced copper matrix composites[J]. Nanomaterials, 2019, 9(4).Doi:10.3390/nano9040498 .
|
32 |
PAN Chaochao, GAUR A P S, LYNN M, et al. Enhanced electrical conductivity in graphene-copper multilayer composite[J]. AIP Advances, 2022, 12(1).Doi:10.1063/5.0073879 .
|
33 |
CAO Mu, XIONG Dingbang, YANG Li, et al. Ultrahigh electrical conductivity of graphene embedded in metals[J]. Advanced Fu-Materials nctional, 2019, 29(17).Doi:10.1002/adfm.201806792 .
|
34 |
KASHANI H, KIM C, RUDOLF C, et al. An axially continuous graphene-copper wire for high-power transmission:Thermoelectrical characterization and mechanisms[J]. Advanced Materials, 2021, 33(51).Doi:10.1002/adma.202104208 .
|
35 |
LI Tiejun, WANG Yaoqi, YANG Ming, et al. High strength and conductivity copper matrix composites reinforced by in situ graphene through severe plastic deformation processes[J]. Journal of Alloys and Compounds, 2021, 851.Doi:10.1016/j.jallcom.2020.156703 .
|
36 |
孙垚垚, 宋家乐, 郑斌, 等. 石墨烯防腐涂层研究进展[J]. 无机盐工业, 2021, 53(11):30-35.
|
|
SUN Yaoyao, SONG Jiale, ZHENG Bin, et al. Research progress of graphene anticorrosive coating[J]. Inorganic Chemicals Industry, 2021, 53(11):30-35.
|
37 |
LIU Cansen, SU Fenghua, LIANG Jizhao. Producing cobalt-graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance[J]. Applied Surface Science, 2015, 351: 889-896.
|
38 |
WANG Jianqiao, LEI Weining, DENG Yao, et al. Effect of current density on microstructure and corrosion resistance of Ni-graphene oxide composite coating electrodeposited under supercritical carbon dioxide[J]. Surface and Coatings Technology, 2019, 358: 765-774.
|
39 |
PAVITHRA C L P, SARADA B V, RAJULAPATI K V, et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness[J]. Scientific Reports, 2014, 4.Doi:10.1038/srep04049 .
|
40 |
ZHAO Xinyue, TANG Jiancheng, YU Fangxin, et al. Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition[J]. Journal of Alloys and Compounds, 2018, 766: 266-273.
|
41 |
ZHANG Jun, HAN J H. Thermal properties and failure mechanism of graphene nanoplatelet-reinforced copper composites fabricated using electroless plating[J]. Journal of Alloys and Compounds, 2022, 893.Doi:10.1016/j.jallcom.2021.162233 .
|
42 |
KHDAIR A I, IBRAHIM A. Effect of graphene addition on the physicomechanical and tribological properties of Cu nanocomposites[J]. International Journal of Minerals,Metallurgy and Materials, 2022, 29(1):161-167.
|
43 |
ZHANG Xiang, SHI Chunsheng, LIU Enzuo, et al. Effect of interface structure on the mechanical properties of graphene nanosheets reinforced copper matrix composites[J]. ACS Applied Materials & Interfaces, 2018, 10(43):37586-37601.
|
44 |
SHI Lan, LIU Mabao, YANG Yanjie, et al. Achieving high strength and ductility in copper matrix composites with graphene network[J]. Materials Science and Engineering:A, 2021, 828.Doi:10.1016/j.msea.2021.142107 .
|
45 |
HANSEN N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8):801-806.
|
46 |
NARDONE V C, PREWO K M. On the strength of discontinuous silicon carbide reinforced aluminum composites[J]. Scripta Metallurgica, 1986, 20(1):43-48.
|
47 |
ZHANG Xiang, XU Yixin, WANG Miaocao, et al. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites[J]. Nature Communications, 2020, 11.Doi:10.1038/s41467-020-16490-4 .
|
48 |
GAO Zhaoshun, ZUO Tingting, WANG Meng, et al. In-situ graphene enhanced copper wire:A novel electrical material with simultaneously high electrical conductivity and high strength[J]. Carbon, 2022, 186: 303-312.
|
49 |
YANG Ming, WENG Lin, ZHU Hanxing, et al. Simultaneously enhancing the strength,ductility and conductivity of copper matrix composites with graphene nanoribbons[J]. Carbon, 2017, 118: 250-260.
|
50 |
NIE J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia, 2003, 48(8):1009-1015.
|
51 |
KIM W J, LEE T J, HAN S H. Multi-layer graphene/copper composites:Preparation using high-ratio differential speed rolling,microstructure and mechanical properties[J]. Carbon, 2014, 69: 55-65.
|
52 |
ZHANG Xiang, SHI Chunsheng, LIU Enzuo, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9(33):11929-11938.
|
53 |
郭俊锁. CoO/石墨烯的制备及电化学性能研究[J]. 无机盐工业, 2017, 49(2):47-49.
|
|
GUO Junsuo. Study on preparation and electrochemical performance of CoO/graphene[J]. Inorganic Chemicals Industry, 2017, 49(2):47-49.
|
54 |
粟驰, 张程蕾. 石墨烯及衍生除油材料的研究进展[J]. 无机盐工业, 2021, 53(7):30-35.
|
|
SU Chi, ZHANG Chenglei. Research progress of graphene and derived oil removal materials[J]. Inorganic Chemicals Industry, 2021, 53(7):30-35.
|
55 |
董月芬. 锂离子电池负极材料石墨烯复合氧化铋的电化学性能研究[J]. 无机盐工业, 2018, 50(4):23-26.
|
|
DONG Yuefen. Electrochemical performance of bismuth oxide graphene composite as anode material of lithium ion battery[J]. Inorganic Chemicals Industry, 2018, 50(4):23-26.
|
56 |
胡驰. 石墨烯/二氧化钛的制备及钙钛矿太阳能电池性能研究[J]. 无机盐工业, 2018, 50(8):49-51.
|
|
HU Chi. Preparation of graphene/TiO2 and performance of perovs-kite solar cells[J]. Inorganic Chemicals Industry, 2018, 50(8):49-51.
|
57 |
孟祖超, 叶绿生, 尹云超, 等. 石墨烯/二氧化钛复合材料的制备及催化性能研究[J]. 无机盐工业, 2015, 47(1):63-65, 78.
|
|
MENG Zuchao, YE Lüsheng, YIN Yunchao, et al. Preparation and catalytic properties of graphene/titania composites[J]. Inorganic Chemicals Industry, 2015, 47(1):63-65, 78.
|