| [1] | 孙海杰, 陈凌霞, 张玉凤, 等. 钴-硼/二氧化锆催化剂催化硼氢化钠水解制氢研究[J]. 无机盐工业, 2019, 51(3):72-76. | 
																													
																						| [2] | 孙海杰, 陈志浩, 陈凌霞, 等. 自搅拌下CoB/SiO2催化剂催化硼氢化钠水解制氢研究[J]. 无机盐工业, 2020, 52(3):101-106. | 
																													
																						| [3] | 李婉晴. 乙二醇水相重整制氢催化剂制备及反应特性研究[D]. 天津:天津大学, 2016. | 
																													
																						| [4] | 杨浩. 乙酸自热重整制氢的锌系镍基催化剂的研究[D]. 四川:成都理工大学, 2018. | 
																													
																						| [5] | 江涛, 陈诗诗, 曹发海. 生物质多元醇水相重整制氢研究进展[J]. 化工进展, 2012, 31(5):1010-1017. | 
																													
																						| [6] | 杨淑倩, 贺建平, 张娜, 等. 稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报, 2018, 46(2):179-188. | 
																													
																						| [7] | 杨淑倩, 张娜, 贺建平, 等. Ce的浸渍顺序对Cu/Zn-Al水滑石衍生催化剂用于甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报, 2018, 46(4):479-488. | 
																													
																						| [8] | Liu Di, Men Yong, Wang Jinguo, et al. Highly active and durable Pt/In2O3/Al2O3 catalysts in methanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41(47):21990-21999. | 
																													
																						| [9] | Nielsen M, Alberico E, Baumann W, et al. Low-temperature aque-ous-phase methanol dehydrogenation to hydrogen and carbon dio-xide[J]. Nature, 2013, 495:85-89. | 
																													
																						| [10] | Lin Lili, Zhou Wu, Gao Rui, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544:80-83. | 
																													
																						| [11] | 郭芳林. 反应与吸附耦合的乙醇水蒸气重整制氢[D]. 北京:北京化工大学, 2008. | 
																													
																						| [12] | 杨欢, 何素芳, 王云珠, 等. Ni-CaO-La2O3催化剂在乙醇水蒸气重整制氢中的应用[J]. 石油化工, 2020, 49(2):107-112. | 
																													
																						| [13] | 李亮荣, 丁永红, 王飞, 等. 乙醇水蒸气重整制氢双金属催化剂Ni-Co/La2O2CO3的研究[J]. 应用化工, 2013, 42(5):866-869. | 
																													
																						| [14] | Zhang Xiaosong, Jin Hongguang. Thermodynamic analysis of che-mical-looping hydrogen generation[J]. Applied Energy, 2013, 112:800-807. | 
																													
																						| [15] | Isarapakdeetham S, Kim-Lohsoontorn P, Wongsakulphasatch S, et al. Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3[J]. International Journal of Hydrogen Energy, 2020, 45(3):1477-1491. | 
																													
																						| [16] | 王瑞义, 刘欢, 郑占丰, 等. 低温下Pt/Al2O3和 Pd/Al2O3光辅助乙二醇水相重整制氢研究[J]. 燃料化学学报, 2019, 47(12):1486-1494. | 
																													
																						| [17] | Kim H D, Park H J, Kim T W, et al. Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(10):8310-8317. | 
																													
																						| [18] | Zhang Jianguang, Xu Ningge. Hydrogen production from ethylene glycol aqueous phase reforming over Ni-Al layered hydrotalcite-derived catalysts[J]. Catalysts, 2020, 10(1):54. | 
																													
																						| [19] | Chen Dong, Wang Wenju, Liu Chenlong. Hydrogen production through glycerol steam reforming over beehive-biomimetic graphene-encapsulated nickel catalysts[J]. Renewable Energy, 2020, 145:2647-2657. | 
																													
																						| [20] | Suffredini D F P, Thyssen V V, de Almeida P M M, et al. Renewable hydrogen from glycerol reforming over nickel aluminate-based catalysts[J]. Catalysis Today, 2017, 289:96-104. | 
																													
																						| [21] | Ni Ying, Wang Chao, Chen Ying, et al. High purity hydrogen production from sorption enhanced chemical looping glycerol reforming:Application of NiO-based oxygen transfer materials and potassium promoted Li2ZrO3 as CO2 sorbent[J]. Applied Thermal Engineering, 2017, 124:454-465. | 
																													
																						| [22] | 贺仪平, 邓梦婷, 朱阁, 等. 双功能钙基催化剂催化苯酚重整制氢实验研究[J]. 环境科学与技术, 2019, 42(8):40-46. | 
																													
																						| [23] | Abbas T, Tahir M, Saidina Amin N A. Enhanced metal-support interaction in Ni/Co3O4/TiO2 nanorods toward stable and dynamic hydrogen production from phenol steam reforming[J]. Industrial & Engineering Chemistry Research, 2018, 58(2):517-530. | 
																													
																						| [24] | Liu Chenlong, Chen Dong, Cao Yongan, et al. Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas[J]. Renewable Energy, 2020, 161:408-418. | 
																													
																						| [25] | Choi I H, Hwang K R, Lee K Y, et al. Catalytic steam reforming of biomass-derived acetic acid over modified Ni/γ-Al2O3 for sustainable hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(1):180-190. | 
																													
																						| [26] | Zhou Qing, Zhong Xinyan, Xie Xingyue, et al. Auto-thermal reforming of acetic acid for hydrogen production by ordered mesoporous Ni-xSm-Al-O catalysts:Effect of samarium promotion[J]. Renewable Energy, 2020, 145:2316-2326. | 
																													
																						| [27] | 杨浩, 李辉谷, 谢星月, 等. 乙酸自热重整制氢用类水滑石衍生Zn-Ni-Al-Fe-O催化剂研究[J]. 燃料化学学报, 2018, 46(11):1352-1358. | 
																													
																						| [28] | Kumar A, Sinha A S K. Comparative study of hydrogen production from steam reforming of acetic acid over synthesized catalysts via MOF and wet impregnation methods[J]. International Journal of Hydrogen Energy, 2020, 45(20):11512-11526. |