[1] |
Wang R, Liao S, Ji S. High performance Pd-based catalysts for oxi-dation of formic acid[J]. Journal of Power Sources, 2008,180(1):205-208.
|
[2] |
Aslam N M, Masdar M S, Kamarudin S K, et al. Overview on direct formic acid fuel cells(DFAFCs) as an energy sources[J]. APCBEE Procedia, 2012,3:33-39.
|
[3] |
方向红, 张寅秋, 王琪, 等. Pd/AC催化剂催化分解甲酸反应条件的研究[J]. 无机盐工业, 2010,42(2):43-45.
|
[4] |
Brummer S B, Makrides A C. Adsorption and oxidation of formic acid on smooth platinum electrodes in perchloric acid solutions[J]. The Journal of Physical Chemistry, 1964,68(6):1448-1459.
|
[5] |
Ha S, Larsen R, Zhu Y, et al. Direct formic acid fuel cells with 600 mA/cm at 0.4 V and 22 ℃[J]. Fuel Cells, 2004,4(4):337-343.
|
[6] |
Rice C, Ha S, Masel R I, et al. Catalysts for direct formic acid fuel cells[J]. Journal of Power Sources, 2003,115(2):229-235.
|
[7] |
Cuesta A, Cabello G, Osawa M, et al. Mechanism of the electrocata-lytic oxidation of formic acid on metals[J]. ACS Catalysis, 2012,2(5):728-738.
|
[8] |
Joo J, Uchida T, Cuesta A, et al. Importance of acid-base equilibrium in electrocatalytic oxidation of formic acid on platinum[J]. Journal of the American Chemical Society, 2013,135(27):9991-9994.
|
[9] |
Chen Y X, Heinen M, Jusys Z, et al. Bridge-bonded formate:Active intermediate or spectator species in formic acid oxidation on a Pt film electrode?[J]. Langmuir, 2006,22(25):10399-10408.
|
[10] |
Chen Y X, Heinen M, Jusys Z, et al. Kinetics and mechanism of the electrooxidation of formic acid—Spectroelectrochemical studies in a flow cell[J]. Angewandte Chemie International Edition, 2006,45(6):981-985.
|
[11] |
Hammer B, Nørskov J K. Theoretical surface science and cataly-sis—Calculations and concepts[J]. Advances in Catalysis, 2000,45:71-129.
|
[12] |
魏子栋. 质子交换膜燃料电池催化剂性能增强方法研究进展[J]. 化工进展, 2016,35(9):2629-2639.
|
[13] |
Xu S. The electrooxidation of formic acid catalyzed by Pd-Ga nano-alloys[J]. Catalysis Science & Technology, 2019,9(5):1255-1259.
|
[14] |
Ulas B, Caglar A, Sahin O, et al. Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation[J]. Journal of Colloid and Interface Science, 2018,532:47-57.
|
[15] |
Zhang R, Yang M, Peng M, et al. Understanding the role of Pd:Cu ratio,surface and electronic structures in Pd-Cu alloy material applied in direct formic acid fuel cells[J]. Applied Surface Sci-ence, 2019,465:730-739.
|
[16] |
Wang H, Li Y, Li C, et al. Hyperbranched PdRu nanospine assem-blies:An efficient electrocatalyst for formic acid oxidation[J]. Jo-urnal of Materials Chemistry A, 2018,36(6):17514-17518.
|
[17] |
Kang X, Miao K, Guo Z, et al. PdRu alloy nanoparticles of solid so-lution in atomic scale:Size effects on electronic structure and ca-talytic activity towards electrooxidation of formic acid and meth-anol[J]. Journal of catalysis, 2018,364:18-191.
|
[18] |
Zhang X, Fan H, Zheng J, et al. Pd-Zn nanocrystals for highly effi-cient formic acid oxidation[J]. Catalysis Science & Technology, 2018,18(8):4757-4765.
|
[19] |
Gong Y, Liu X, Gong Y, et al. Synjournal of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation[J]. Journal of Colloid and Interface Science, 2018,530:189-195.
|
[20] |
Wang S, Chang J, Xue H, et al. Catalytic stability study of a Pd-Ni2P/C catalyst for formic acid electrooxidation[J]. Chem.Electro.Chem., 2017,4(5):1243-1249.
|
[21] |
Ma Y, Li T, Chen H, et al. A general strategy to the synjournal of car-bon-supported PdM(M=Co,Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation[J]. Journal of Energy Chemistry, 2017,26(6):1238-1244.
|
[22] |
Zhang L Y, Liu Z. Graphene decorated with Pd4Ir nanocrystals:Ul-trasound-assisted synjournal,and application as a catalyst for oxidation of formic acid[J]. Journal of Colloid and Interface Science, 2017,505:783-788.
|
[23] |
何利华, 汪广进, 龚春丽, 等. 特殊形貌Pd纳米材料的控制合成及应用研究进展[J]. 材料导报, 2018(S2):44-49,68.
|
[24] |
Bin D, Yang B, Ren F, et al. Facile synjournal of PdNi nanowire ne-tworks supported on reduced graphene oxide with enhanced cat-alytic performance for formic acid oxidation[J]. Journal of Materials Chemistry A, 2015,26(3):14001-14006.
|
[25] |
Zheng J N, Zhang M, Li F F, et al. Facile synjournal of Pd nanoch-ains with enhanced electrocatalytic performance for formic acid oxidation[J]. Electrochimica Acta, 2014,130:446-452.
|
[26] |
Zhang L Y, Gong Y, Wu D, et al. Twisted palladium-copper nano-chains toward efficient electrocatalytic oxidation of formic acid[J]. Journal of Colloid and Interface Science, 2019,537:366-374.
|
[27] |
Ortiz-Ortega E, Carrera-Cerritos R, Arjona N, et al. Pd Nanostruc-tures with high tolerance to CO poisoning in the formic acid elec-trooxidation reaction[J]. Procedia Chemistry, 2014,12:9-18.
|
[28] |
Xi Z, Erdosy D P, Mendoza-Garcia A, et al. Pd Nanoparticles cou-pled to WO2.72 nanorods for enhanced electrochemical oxidation of formic acid[J]. Nano Letters, 2017,17(4):2727-2731.
|
[29] |
Yang F, Zhang Y, Liu P F, et al. Pd-Cu alloy with hierarchical ne-twork structure as enhanced electrocatalysts for formic acid oxidation[J]. International Journal of Hydrogen Energy, 2016,41(16):6773-6780.
|
[30] |
Zhang L Y, Gong Y, Wu D, et al. Palladium-cobalt nanodots ancho-red on graphene:In-situ synjournal,and application as an anode catalyst for direct formic acid fuel cells[J]. Applied Surface Sci-ence, 2019,469:305-311.
|
[31] |
Xu H, Zhang K, Yan B, et al. Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation[J]. Journal of Power Sources, 2017,356:27-35.
|
[32] |
Ma T, Li C, Liu T, et al. Size-controllable synjournal of dendritic Pd nanocrystals as improved electrocatalysts for formic acid fuel cells′ application[J]. Journal of Saudi Chemical Society, 2018,22(7):846-854.
|
[33] |
Wang H H, Zhang J F, Chen Z L, et al. Size-controllable synjournal and high-performance formic acid oxidation of polycrystalline Pd nanoparticles[J]. Rare Metals, 2019,38(2):115-121.
|
[34] |
Liu X, Li Z, Wang K, et al. Facile synjournal of Pd nanocubes with assistant of iodide and investigation of their electrocatalytic perf-ormances towards formic acid oxidation[J]. Nanomaterials, 2019,9(3):375.
|
[35] |
Yazdan-Abad M Z, Noroozifar M, Alfi N. Investigation on the elec-trocatalytic activity and stability of three-dimensional and two-di-mensional palladium nanostructures for ethanol and formic acid oxidation[J]. Journal of Colloid and Interface Science, 2018,532:485-490.
|
[36] |
Qiu X, Zhang H, Wu P, et al. One-pot synjournal of freestanding po-rous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation[J]. Advanced Functional Materials, 2017,27(1).Doi: 10.1002/adfm.201603852.
|
[37] |
Cazares-ávila E, Ruiz-Ruiz E J, Hernández-Ramírez A, et al. Ef-fect of OMC and MWNTC support on mass activity of PdCo cata-lyst for formic acid electro-oxidation[J]. International Journal of Hydrogen Energy, 2017,42(51):30349-30358.
|
[38] |
Mazurkiewicz-Pawlicka M, Malolepszy A, Mikolajczuk-Zychora A, et al. A simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells[J]. Applied Surface Science, 2019,476:806-814.
|
[39] |
Lu H T, Yang Z J, Yang X, et al. CeO2 Nanotubes supported Pd elec-trocatalysts for formic acid oxidation[J]. Electrocatalysis, 2015,6(3):255-262.
|
[40] |
Ali H, Kanodarwala F K, Majeed I, et al. La2O3 Promoted Pd/rGO electro-catalysts for formic acid oxidation[J]. ACS Applied Materi-als & Interfaces, 2016,8(47):32581-32590.
|
[41] |
Kankla P, Limtrakul J, Green M L H, et al. Electrooxidation of for-mic acid enhanced by surfactant-free palladium nanocubes on sur-face modified graphene catalyst[J]. Applied Surface Science, 2019,471:176-184.
|
[42] |
吕美英, 李文鹏, 刘慧玲, 等. 利用石墨烯-炭黑组成的二元碳载体增强甲酸在钯催化剂上电化学氧化的活性[J]. 催化学报, 2017,38(5):939-947.
|
[43] |
Ko Y J, Kim J Y, Lee K S, et al. Palladium nanoparticles from sur-factant/fast-reduction combination one-pot synjournal for the liquid fuel cell applications[J]. International Journal of Hydrogen Ener-gy, 2018,43(41):19029-19037.
|
[44] |
Gong Y, He N, Qin C, et al. Nitrogen-doped carbon-modified tita-nium oxides supported Pd catalyst for the electrooxidation of for-mic acid[J]. Journal of Solid State Electrochemistry, 2018,22(8):2623-2628.
|
[45] |
Xu H, Yan B, Zhang K, et al. N-doped graphene-supported binary PdBi networks for formic acid oxidation[J]. Applied Surface Sci-ence, 2017,416:191-199.
|