[1] |
ZHU L, LIU X Q, JIANG H L, et al. Metal-organic frameworks for heterogeneous basic catalysis[J]. Chemical Reviews, 2017, 117(12):8129-8176.
|
[2] |
VALVEKENS P, JONCKHEERE D, DE BAERDEMAEKER T, et al. Base catalytic activity of alkaline earth mofs:A(micro) spectro-scopic study of active site formation by the controlled transforma tion of structural anions[J]. Chemical Science, 2014, 5(11):4517-4524.
|
[3] |
ASGHARNEJAD L, ABBASI A, NAJAFI M, et al. Synjournal and st-ructure of three new alkaline earth metal-organic frameworks with high thermal stability as catalysts for knoevenagel condensation[J]. Crystal Growth Design, 2019, 19(5):2679-2686.
|
[4] |
ZHANG X F, LAI E S M, MARTIN-ARANDA R, et al. An investiga-tion of Knoevenagel condensation reaction in microreactors using a new zeolite catalyst[J]. Applied Catalysis A:General, 2004, 261(1):109-118.
|
[5] |
CONSTANTINO V R, PINNAVAIA T J. Structure-reactivity rela-tionships for basic catalysts derived from a Mg2+/Al3+/CO32- layered double hydroxide[J]. Catalysis Letters, 1994, 23(3/4):361-367.
|
[6] |
HATTORI H, SHIMA M, KABASHIMA H, et al. Alcoholysis of ester and epoxide catalyzed by solid bases[J]. Studies in Surface Science and Catalysis, 2000, 130:3507-3512.
|
[7] |
LAURON-PERNOT H, LUCK F, POPA J, et al. Methylbutynol:A new and simple diagnostic tool for acidic and basic sites of solids[J]. Applied Catalysis, 1991, 78(2):213-225.
|
[8] |
MANGALA K, SREEKUMAR K. Dendrimer functionalized polysilane:An efficient and recyclable organocatalyst[J]. Journal of Applied Polymer Science, 2015, 132(9-10):10.1002/app.41593.
|
[9] |
SUN Y B, CAO C Y, HUANG P P, et al. Amines functionalized C60 as solid base catalysts for Knoevenagel condensation with high ac-tivity and stability[J]. RSC Advances, 2015, 5(105):86082-86087.
|
[10] |
GASCON J, CORMA A, KAPTEIJN F, et al. Metal organic frame-work catalysis:Quo vadis?[J]. ACS Catalysis, 2014, 4(2):361-378.
|
[11] |
CHEN Y, HONG S, FU C W, et al. Investigation of the mesoporous metal-organic framework as a new platform to study the transport phenomena of biomolecules[J]. ACS Applied Materials Interfaces, 2017, 9(12):10874-10881.
|
[12] |
YUAN S, LIU T F, FENG D, et al. A single crystalline porphyrinic titanium metal-organic framework[J]. Chemical Science, 2015, 6(7):3926-3930.
|
[13] |
TIAN J, XU Z Y, ZHANG D W, et al. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous pho-tocatalytic activity for H2 production[J]. Nature Communications, 2016, 7(1):1-9.
|
[14] |
FROMM K M. Coordination polymer networks with s-block metal ions[J]. Coordination Chemistry Reviews, 2008, 252(8/9):856-885.
|
[15] |
MAITY T, SAHA D, DAS S, et al. Barium carboxylate metal-organic framework-synjournal,X-ray crystal structure,photoluminescence and catalytic study[J]. European Journal of Inorganic Chemistry, 2012, 2012(30):4914-4920.
|
[16] |
QUEEN W L, HUDSON M R, BLOCH E D, et al. Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc)(M=Mg,Mn,Fe,Co,Ni,Cu,Zn)[J]. Chemical Science, 2014, 5(12):4569-4581.
|
[17] |
LEE K, HOWE J D, LIN L C, et al. Small-molecule adsorption in open-site metal-organic frameworks:A systematic density functio-nal theory study for rational design[J]. Chemistry of Materials, 2015, 27(3):668-678.
|
[18] |
YANG Y, YAO H F, XI F G, et al. Amino-functionalized Zr(Ⅳ)me-tal-organic framework as bifunctional acid-base catalyst for Kno-evenagel condensation[J]. Journal of Molecular Catalysis A:Che-mical, 2014, 390:198-205.
|
[19] |
HARTMANN M, FISCHER M. Amino-functionalized basic cataly-sts with MIL-101 structure[J]. Microporous Mesoporous Materials, 2012, 164:38-43.
|
[20] |
DIETZEL P D C, BESIKIOTIS V, BLOM R, et al. Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide[J]. Journal of Materials Chemistry, 2009, 19(39):7362-7370.
|
[21] |
BAO Z, YU L, REN Q, et al. Adsorption of CO2 and CH4 on a mag-nesium-based metal organic framework[J]. Colloid and Interface Science, 2011, 353(2):549-556.
|
[22] |
CLIMENT M J, CORMA A, DOMíNGUEZ I, et al. Gem-diamines as highly active organocatalysts for carbon-carbon bond forma-tion[J]. Journal of Catalysis, 2007, 246(1):136-146.
|
[23] |
CORMA A, IBORRA S, RODRIGUEZ I, et al. Immobilized proton sponge on inorganic carriers:The synergic effect of the support on catalytic activity[J]. Journal of Catalysis, 2002, 211(1):208-215.
|
[24] |
RODRIGUEZ I, SASTRE G, CORMA A, et al. Catalytic activity of proton sponge:Application to Knoevenagel condensation reactio-ns[J]. Journal of Catalysis, 1999, 183(1):14-23.
|
[25] |
BURGOYNE A R, MEIJBOOM R. Knoevenagel condensation reac-tions catalysed by metal-organic frameworks[J]. Catalysis Letters, 2013, 143(6):563-571.
|