[1] |
MINH N Q. Solid oxide fuel cell technology-Features and applica-tions[J]. Solid State Ionics, 2004, 174(1/2/3/4):271-277.
|
[2] |
韩敏芳. 固体氧化物燃料电池(SOFC)技术进展和产业前景[J]. 民主与科学, 2017(5):25-26.
|
[3] |
蒋三平. 中温固体氧化物燃料电池优势和挑战的简要评述(英文)[J]. 电化学, 2012, 18(6):479-495.
|
[4] |
孙帆, 郑勇, 高小龙, 等. 固体氧化物燃料电池电解质和电极材料的研究进展[J]. 金属功能材料, 2010, 17(4):75-80.
|
[5] |
MOLENDA J, SWIERCZEK K, ZAJAC W. Functional materials for the IT-SOFC[J]. Journal of Power Sources, 2007, 173(2):657-670.
|
[6] |
LEE D, HAN J H, CHUN Y, et al. Preparation and characterization of strontium and magnesium doped lanthanum gallates as the elec-trolyte for IT-SOFC[J]. Journal of Power Sources, 2007, 166(1):35-40.
|
[7] |
隋静, 董立峰. 锥管状LSGM电解质支撑的SOFC的研制[J]. 电池, 2014, 44(5):274-276.
|
[8] |
TAO Y, SHAO J, WANG J, et al. Synjournal and properties of La0.6Sr0.4CoO3-δ nanopowder[J]. Journal of Power Sources, 2008, 185(2):609-614.
|
[9] |
王海霞, 屠恒勇. SOFC阴极材料La0.6Sr0.4CoO3-δ的甘氨酸-硝酸盐法合成与表征[J]. 功能材料, 2010, 41(3):397-400.
|
[10] |
ISHIHARA T, YAN J, SHINAGAWA M, et al. Ni-Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film[J]. Electrochimica Acta, 2006, 52(4):1645-1650.
|
[11] |
ISHIHARA T, SHINAGAWA M, KAWAKAMI A, et al. Ni-Fe bi-metallic anode for intermediate temperature solid oxide fuel cells using LaGaO3 based oxide electrolyte[J]. Materials Science Forum, 2007, 539-543:1350-1355.
|
[12] |
SUN Y F, LI J H, CUI L, et al. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys:A novel coking-tolerant fuel cell anode catalyst[J]. Nanoscale, 2015, 7(25):11173-11181.
|
[13] |
SIN A, KOPNIN E, DUBITSKY Y, et al. Performance and life-time behaviour of NiCu-CGO anodes for the direct electro-oxidation of methane in IT-SOFCs[J]. Journal of Power Sources, 2007, 164(1):300-305.
|
[14] |
王群浩, 林冬, 彭开萍. CuNi-GDC双金属阳极支撑的IT-SOFC制备及性能[J]. 电源技术, 2012, 36(8):1128-1131.
|
[15] |
AN W, GATEWOOD D, DUNLAP B, et al. Catalytic activity of bi-metallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory[J]. Journal of Power Sources, 2011, 196(10):4724-4728.
|
[16] |
田丰源, 刘江. 固体氧化物燃料电池的制备工艺[J]. 硅酸盐学报, 2021, 49(1):136-152.
|
[17] |
冯潇, 赵雪雪, 邢亚哲. 热喷涂制备固体氧化物燃料电池电解质层的研究进展[J]. 表面技术, 2019, 48(4):10-17.
|
[18] |
CHELMEHSARA M E, MAHMOUDIMEHR J. Techno-economic comparison of anode-supported,cathode-supported,and electrolyte-supported SOFCs[J]. International Journal of Hydrogen Energy, 2018, 43(32):15521-15530.
|
[19] |
SHRI P B, SENTHIL K S, ARUNA S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell:A review[J]. Renewable and Sustainable Energy Reviews, 2014, 36:149-179.
|
[20] |
LIU Y, HASHIMOTO S, NISHINO H, et al. Fabrication and charac-terization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3-δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs[J]. Journal of Power Sources, 2007, 164(1):56-64.
|
[21] |
CHEN X J, LIU Q L, CHAN S H, et al. High performance cathode-supported SOFC with perovskite anode operating in weakly humi-dified hydrogen and methane[J]. Electrochemistry Communicat-ions, 2007, 9(4):767-772.
|
[22] |
YAMAGUCHI T, SHIMIZU S, SUZUKI T, et al. Fabrication and characterization of high performance cathode supported small-scale SOFC for intermediate temperature operation[J]. Electrochemistry Communications, 2008, 10(9):1381-1383.
|
[23] |
MCINTOSH S, GORTE R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews, 2004, 104(10):4845-4865.
|
[24] |
SMITH R B, BAZANT M Z. Multiphase porous electrode theory[J]. Journal of the Electrochemical Society, 2017, 164(11):E3291-E3310.
|
[25] |
YANG C, CHENG J, HE H, et al. Ni/SDC materials for solid oxide fuel cell anode applications by the glycine-nitrate method[J]. Key Engineering Materials, 2010, 434-435(3):731-734.
|
[26] |
OH T S, YU A S, ADIJANTO L, et al. Infiltrated lanthanum stron-tium chromite anodes for solid oxide fuel cells:Structural and cat-alytic aspects[J]. Journal of Power Sources, 2014, 262:207-212.
|
[27] |
CHICK L A, PEDERSON L R, MAUPIN G D, et al. Glycine-nitrate combustion synjournal of oxide ceramic powders[J]. Materials Let-ters, 1990, 10(1/2):6-12.
|
[28] |
HUANG K, GOODENOUGH J B. A solid oxide fuel cell based on Sr-and Mg-doped LaGaO3 electrolyte:The role of a rare-earth oxide buffer[J]. Journal of Alloys and Compounds, 2000, 303-304:454-464.
|
[29] |
YOU H, ZHAO C, QU B, et al. Fabrication of Ni0.5Cu0.5Ox coated YSZ anode by hard template method for solid oxide fuel cells[J]. Jour-nal of Alloys and Compounds, 2016, 669:46-54.
|