[1] |
郭静, 李明星. 新能源汽车产业发展环境分析研究[J].科技创新与应用,2019(33):74-75.
|
[2] |
李梦斐. 机车柴油机排放法规的演变及降排技术的应用[J].内燃机与配件,2019(14):55-56.
|
[3] |
帅石金, 刘世宇, 马骁, 等. 重型柴油车满足近零排放法规的技术分析[J]. 汽车安全与节能学报, 2019,10(1):16-31.
|
[4] |
GB 17691—2018 重型柴油车污染物排放限值及测量方法(中国第六阶段)[S].
|
[5] |
付细平, 陈增响, 何伟娇, 等. 轻型柴油车紧凑型后处理筒式封装结构:中国,109882273A[P].2019-06-14.
|
[6] |
张振涛, 李云华, 李敏. SCRF系统特性研究[J]. 内燃机与动力装置, 2017,34(5):66-69.
|
[7] |
Lasitha Cumaranatunge, Andrew Chiffey, Joel Stetina, et al. A Study of the soot combustion efficiency of an SCRF® catalyst vs a CSF dur-during active regeneration [J]. Emission Control Science and Tech-nology, 2017,3(1):93-104.
|
[8] |
邱松林, 滕勤, 马标. 柴油机选择催化还原过滤器技术研究进展[J]. 小型内燃机与车辆技术, 2016,45(6):84-91.
|
[9] |
杨子龙. 船舶柴油机颗粒物排放法规及控制技术发展[J]. 柴油机, 2016,38(6):1-5.
|
[10] |
Manuel Kleinhenz, Axel Fiedler, Peter Lauer, et al. SCR coated DPF for marine engine applications[J]. Topica in Catalysis, 2019,62(1):282-287.
|
[11] |
刘强, 冯西鹏, 祁晓东. 基于泡沫合金载体的SCRF在双燃料重型柴油机排放控制的试验研究[J].内燃机与配件,2019(9):22-24.
|
[12] |
Watling T C., Lopez Y, Pless J D, et al. Removal of hydrocarbons and particulate matter using a vanadia selective catalytic reduc-tion catalyst:An experimental and modeling study[J]. SAE Inter-national Journal of Engines, 2013,6(2):882-897.
|
[13] |
Lopez-De Jesus Y M, Chigada P I, Watling T C, et al. NOx and PM reduction from diesel exhaust using vanadia SCRF[J]. SAE International Journal of Engines, 2016,9(2):1247-1257.
|
[14] |
Chigada P I, Ahmadinejad M, Newman A D, et al. Impact of SCR activity on soot regeneration and the converse effects of soot re-generation on SCR activity on a vanadia-SCRF® [J]. SAE Tech-nical Paper, 2018,1(2):0957-0962.
|
[15] |
Lee J H, Paratore M J, Brown D B. Evaluation of Cu-based SCR/DPF technology for diesel exhaust emission control[J].SAE Inter-national Journal of Fuels and Lubricants, 2009,l(1):96-101.
|
[16] |
Tsukamoto Y, Utaki S, Zhang W, et al. Effects of soot deposition on NOx purification reaction and mass transfer in a SCR/DPF cataly-st[J]. SAE Technical Paper, 2018,1(2):1703-1707.
|
[17] |
Kim Y J, Kim P S, Kim C H, et al. Deactivation mechanism of Cu/zeolite SCR catalyst under high-temperature rich operation condi-tion[J]. Applied Catalysis,A.General:An International Journal Devoted to Catalytic Science and Its Applications, 2019,569:175-180.
|
[18] |
Ferenc Martinovic, Tahrizi Andana, Fabio Alessandro Deorsola, et al. On-filter Integration of soot oxidation and selective catalytic reduction of NOx with NH3 by selective two component catalysts[J]. Catalysis Letters, 2020,150:573-585 .
|
[19] |
Martinovic F, Deorsola F A, S. Pirone B R, Ammonia mediated NOxSCR and soot oxidation integration for next generation SCR-on-filter application [C].Torino TO,42th Meeting of the Italian Sec-tion of the Combustion Institute, 2019.
|
[20] |
G·斯普利特泽, S·查特杰, R·R·拉贾拉姆, 等. 双功能催化过滤器:中国,103702745A[P].2014-04-02.
|
[21] |
Bensaid S, Balakotaiah V, Luss D. Simulation of NOx and soot aba-tement with Cu-CHA and Fe-ZSM5 catalysts[J]. AIChE Journal, 2016,63(1), 238-248.
|
[22] |
Trandafılovic L V, Mihai O, Woo J, et al. A kinetic model for SCR coated particulate filters-Effect of ammonia-soot interactionsa[J]. Applied Catalysis B:Environmental, 2018.Doi: 10.1016/j.apcatb.2018.08.076.
|
[23] |
杜翰斌. 柴油机SCRF系统性能影响因素的模拟研究[D]. 大连:大连理工大学, 2019.
|