[1] |
Wang P, Cao L, Wu Y, et al. A cathodic photoelectrochemical sensor for chromium(Ⅵ) based on the use of PbS quantum dot semiconductors on an ITO electrode[J]. Mikrochimica Acta, 2018,185(7):356.
|
[2] |
Nezhad-Mokhtari P, Arsalani N, Ghorbani M, et al. Development of biocompatible fluorescent gelatin nanocarriers for cell imaging and anticancer drug targeting[J]. Journal of Materials Science, 2018,53(15):10679-10691.
|
[3] |
Sheung J, Ge P, Lim S J, et al. Structural contributions to hydrodynamic diameter for quantum dots optimized for live-cell single-molecule tracking[J]. Journal of Physical Chemistry C, 2018.Doi: 10.1021/acs.jpcc.8b02516.
|
[4] |
Kong L, Zhang L, Meng Z, et al. Ultrastable,highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting[J]. Nanotechnology, 2018,29(31).Doi: 10.1088/1361-6528/aac39c.
|
[5] |
Chai Y Y, Qu D P, Ma D K, et al. Carbon quantum dots/Zn2+ ions doped-CdS nanowires with enhanced photocatalytic activity for reduction of 4-nitroaniline to p-phenylenediamine [J]. Applied Surface Science, 2018,450:1-8.
|
[6] |
Peng Z, Liu Z, Liu Y, et al. Improving on the interparticle connection for performance enhancement of flexible quantum dot sensitized solar cells[J]. Materials Research Bulletin, 2018,105:91-97.
|
[7] |
Ye Y. Photoluminescence property adjustment of ZnO quantum dots synthesized via sol-gel method[J]. Journal of Materials Science Materials in Electronics, 2018,29:4967-4974.
|
[8] |
Roshini A, Jagadeesan S, Arivazhagan L, et al. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and antimetastatic effects in metastatic lung cancer cell line[J]. Materials Science & Engineering, 2018,92:477-488.
|
[9] |
Ensafi A A, Zakery M, Rezaei B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer[J]. Molecular and Biomolecular Spectroscopy, 2019,206:460-465.
|
[10] |
Dijken A V, Meulenkamp E A, Vanmaekelbergh D, et al. Identification of the transition responsible for the visible emission in ZnO using quantum size effects[J]. Journal of Luminescence, 2000,90(3/4):123-128.
|
[11] |
Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behindgreen photoluminescence in ZnO phosphor powders[J]. Journal of Applied Physics, 1996,79(10):7983-7990.
|
[12] |
van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation[J]. Journal of Physical Chemistry B, 2000,104(8):1715-1723.
|
[13] |
Xiong H M, Shchukin D, Möhwald H, et al. Sonochemical synjournal of highly luminescent zinc oxide nanoparticles doped with magnesium(Ⅱ)[J]. 2009,48(15):2727-2731.
|
[14] |
Huang W Y, Lv X W, Tan J L, et al. Regulable preparation of the oxygen vacancy of ZnO QDs and their fluorescence performance[J]. Journal of Molecular Structure, 2019,1195:653-658.
|
[15] |
Jaggi N, Rathee N. Samarium3+-doped CdSe quantum dots for improved electro-optical properties [J]. Materials Today: Proceedings, 2019,16:201-205.
|
[16] |
Yang J, Li X, Lang J, et al. Effects of mineralizing agent on the morphologies and photoluminescence properties of Eu3+-doped ZnO nanomaterials [J]. Journal of Alloys & Compounds, 2011,509(41):10025-10031.
|
[17] |
Liu Y, Ai K, Yuan Q, et al. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging[J]. Biomaterials, 2011,32(4):1185-1192.
|
[18] |
Sun L W, Shi H Q, Li W N, et al. Lanthanum-doped ZnO quantum dots with greatly enhanced fluorescent quantum yield[J]. Journal of Materials Chemistry, 2012,22(17):8221-8227.
|
[19] |
Huang W Y, Bai D W, Li L J, et al. The synjournal of ultrasmall ZnO@PEG nanoparticles and its fluorescence properties[J]. Journal of Sol-Gel Science and Technology, 2015,74(3):718-725.
|
[20] |
Manikandan A, Vijaya J J, Narayanan S, et al. Comparative investigation of structural,optical properties and dye-sensitized solar cell applications of ZnO nanostructures[J]. Journal of Nanoscience and Nanotechnology, 2014,14(3):2507-2514.
|
[21] |
Shakir M, Faraz M, Sherwani A, et al. Photocatalytic degradation of the Paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro Cytotoxicity assay[J]. Journal of Luminescence, 2016,176:159-167.
|
[22] |
Ahmed M A M, Meyer W E, Nel J M. Structural,optical and electrical properties of the fabricated Schottky diodes based on ZnO,Ce and Sm doped ZnO films prepared via wet chemical technique[J]. Materials Research Bulletin, 2019,115:12-18.
|
[23] |
Bomila R, Srinivasan S, Gunasekaran S, et al. Enhanced photocat alytic degradation of methylene blue dye,opto-magnetic and antibacterial behaviour of pure and La-doped ZnO nanoparticles[J]. Journal of Superconductivity and Novel Magnetism, 2018,31:855-864.
|
[24] |
Pascariu P, Cojocaru C, Olaru N, et al. Novel rare earth (RE-La,Er,Sm) metal doped ZnO photocatalysts for degradation of Congo-reddye: Synjournal,characterization and kinetic studies[J]. Journal of Environmental Management, 2019,239:225-234.
|
[25] |
Caglar Y, Caglar M, Ilican S.XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes[J]. Optik, 2018,164:424-432.
|
[26] |
Thool G S, Arunakumari M, Singh A K, et al. Shape tunable synjournal of Eu-and Sm-doped ZnO microstructures:A morphological evaluation[J]. Bulletin of Materials Science, 2015,38(6):1519-1525.
|
[27] |
Wang D D, Xing G Z, Yang J H, et al. Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers[J]. Journal of Alloys and Compounds, 2010,504(1):22-26.
|
[28] |
Ahmed M, Doyle B P, Carleschi E, et al. Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition[J]. Materials Science in Semiconductor Processing, 2018,79:53-60.
|
[29] |
Ahmed M A, Coetsee L, Meyer W E, et al. Influence(Ce and Sm)co-doping ZnO nanorods on the structural,optical and electrical properties of the fabricated Schottky diode using chemical bath deposition[J]. Journal of Alloys and Compounds, 2019,810:151929.
|
[30] |
Ning H, Wu X, Chai L, et al. Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors[J]. Sensors & Actuators B Chemical, 2010,150(1):230-238.
|
[31] |
Halliburton L E, Giles N C, Garces N Y, et al. Production of native donors in ZnO by annealing at high temperature in Zn vapor[J]. Applied Physics Letters, 2005,87(17):172108.
|
[32] |
Look D C, Reynolds D C, Hemsky J W, et al. Production and annealing of electron irradiation damage in ZnO[J]. Applied Physics Letters, 1999,75(6):811-813.
|
[33] |
Wang H P, Jiang H, Wang X M . Construction of strong alkaline microcavities for facile synjournal of fluorescence-tunable ZnO quantum dots[J]. Chemical Communications, 2010,46(37):6857-7052.
|