无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ

无机盐工业 ›› 2024, Vol. 56 ›› Issue (9): 117-127.doi: 10.19964/j.issn.1006-4990.2024-0001

• 环境·健康·安全 • 上一篇    下一篇

氮掺杂生物炭的制备及其对亚甲基蓝的吸附性能研究

王萍1(), 徐荣声1,2(), 孙冬1, 史小红1, 徐炜1, 李梅1   

  1. 1.北方民族大学化学与化学工程学院,宁夏 银川 750021
    2.北方民族大学国家民委化工技术基础重点实验室,宁夏 银川 750021
  • 收稿日期:2024-01-02 出版日期:2024-09-10 发布日期:2024-04-11
  • 通讯作者: 徐荣声(1982─ ),男,讲师,研究方向为清洁能源利用;E-mail:xurongsheng6463@163.com
  • 作者简介:王萍(1999─ ),女,硕士,研究方向为清洁能源利用;E-mail:w0917pp@163.com
  • 基金资助:
    北方民族大学中央高校基本科研业务费专项资金资助项目(2022XYZHG07)

Study on preparation of nitrogen-doped biochar and its adsorption properties for methylene blue

WANG Ping1(), XU Rongsheng1,2(), SUN Dong1, SHI Xiaohong1, XU Wei1, LI Mei1   

  1. 1.School of Chemistry and Chemical Engineering,North Minzu University,Yinchuan 750021,China
    2.Key Laboratory for Chemical Engineering and Technology,State Ethnic Affairs Commission,North Minzu University,Yinchuan 750021,China
  • Received:2024-01-02 Published:2024-09-10 Online:2024-04-11

摘要:

采用生物质枸杞杆为原料、KHCO3为活化剂、尿素为氮源,制备枸杞杆氮掺杂生物炭。利用氮气吸附-脱附仪、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、拉曼光谱(Raman)、傅里叶变换红外光谱(FT-IR)和X射线光电子能谱(XPS)等分析所制生物炭的形貌、结构和表面官能团等特性,并探析其对水中亚甲基蓝(MB)的吸附行为。结果表明,KHCO3活化枸杞杆的最佳条件:m(枸杞杆炭化料)∶m(KHCO3)=1∶2、活化温度为 800 ℃、活化时间为1 h。在枸杞杆生物炭(LBC)表面掺杂尿素的最佳条件:LBC与尿素的负载比为1∶4(质量比),800 ℃下煅烧1 h,得到氮掺杂生物炭(LBC-N)。LBC和LBC-N的比表面积分别为940.29 m2/g 和1 169.78 m2/g,总孔体积分别为0.57 cm3/g 和0.72 cm3/g,平均孔径分别为5.81 nm 和3.20 nm,均是以介孔为主的生物质活性炭材料。在相应实验条件下,LBC和LBC-N对MB的吸附量分别为542.02 mg/g和639.20 mg/g。准二级动力学模型、颗粒内扩散模型和Langmuir等温模型能很好地描述LBC和LBC-N对MB的吸附过程。根据氮掺杂生物炭的理化性质和吸附实验,LBC-N对MB分子的吸附过程是以π-π相互作用、氢键作用、静电吸引作用等化学作用为主,孔隙填充物理吸附协同作用的结果。

关键词: 枸杞杆, 氮掺杂生物炭, 尿素, 吸附, 亚甲基蓝

Abstract:

Biomass lycium chinensis stalks were used as raw materials,KHCO3 as activator,and urea as nitrogen source to explore the preparation of nitrogen-doped biochar.The morphology,structure,and surface functional groups of the produced biochar were characterized was performed using scanning electron microscopy(SEM),nitrogen adsorption-desorption instrumentation(BET),X-ray powder diffraction(XRD),Raman spectroscopy(Raman),Fourier transform infrared spectroscopy(FT-IR),and X-ray photoelectron spectroscopy(XPS).And its adsorption behavior towards methylene blue(MB) in water was explored.The results showed that the optimal conditions for KHCO3 to activate Lycium chinensis stalks were as follows:mass ratio of 1∶2(Lycium chinensis stalks carbonized material and KHCO3),activation temperature of 800 ℃,and activation time of 1 h.The optimal conditions for doping urea on the surface of lycium chinensis stalks biochar(LBC) were as follows:mass ratio of 1∶4(LBC and urea),and nitrogen-doped biochar(LBC-N) was prepared by calcination at 800 ℃ for 1 h.The specific surface area of LBC and LBC-N were 940.29 m2/g and 1 169.78 m2/g,the total pore volumes were 0.57 cm3/g and 0.72 cm3/g,and the average pore sizes were 5.81 nm and 3.20 nm,respectively.All of them were mainly mesoporous biomass activated carbon materials.Under the corresponding experimental conditions,the adsorption capacities of LBC and LBC-N for MB were 542.02 mg/g and 639.20 mg/g,respectively.The Pseudo-second-order model,Intra-particle diffusion model and Langmuir isothermal model could well describe the adsorption process of MB by LBC and LBC-N.According to the physicochemical properties and adsorption experiments of nitrogenous biochar,the adsorption process of LBC-N on MB molecules was mainly a result of π-π interaction,hydrogen bonding,electrostatic attraction and other chemical effects,and the synergistic effect of physical adsorption by pore filling.

Key words: lycium chinensis stalks, nitrogen-doped biochar, urea, adsorption, methylene blue

中图分类号: