Inorganic Chemicals Industry ›› 2023, Vol. 55 ›› Issue (8): 45-50.doi: 10.19964/j.issn.1006-4990.2023-0295
• Application of novel inorganic materials in photocatalysis and electrocatalysis • Previous Articles Next Articles
SONG Zhijia(), WANG Suisui, KUANG Qin(
)
Received:
2023-05-30
Online:
2023-08-10
Published:
2023-08-25
Contact:
KUANG Qin
E-mail:20520200156126@stu.xmu.edu.cn;qkuang@xmu.edu.cn
CLC Number:
SONG Zhijia, WANG Suisui, KUANG Qin. Hollow Cu-doped TiO2 for enhancing photocatalytic CO2 reduction performance[J]. Inorganic Chemicals Industry, 2023, 55(8): 45-50.
Table 2
Comparison of metal-doped TiO2 catalysts for photocatalytic CO2 reduction"
光催化剂 | 实验条件 | 产物/(μmol·g-1·h-1) | |
---|---|---|---|
CO | CH4 | ||
Cu-TiO2-2(本工作) | 300 W Xe Lamp | 1.05 | 0.27 |
Fe-TiO2-500[ | 300 W Xe Lamp(λ>420 nm) | — | 0.47 |
5Bi-TiO2[ | 250 W Hg Lamp(λ=365 nm) | — | 1.16 |
0.10Ce-TiO2[ | 300 W Xe Lamp(λ>400 nm) | 2.1 | 0.6 |
3%W-TiO2[ | 300 W Xe Lamp(模拟太阳光) | 1.7 | 0.12 |
Co-TiO2-4[ | 300 W Xe Lamp | 1.94 | 0.09 |
1 | HUANG Hengming, SONG Hui, KOU Jiahui,et al.Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction[J].Journal of Energy Chemistry,2022,67:309-341. |
2 | 李佳慧,李克艳,宋春山,等.聚合氮化碳的制备、改性及光催化还原二氧化碳性能研究[J].无机盐工业,2021,53(12):21-28. |
LI Jiahui, LI Keyan, SONG Chunshan,et al.Study on preparation,modification and carbon dioxide photocatalytic reduction performance of polymeric carbon nitride[J].Inorganic Chemicals Industry,2021,53(12):21-28. | |
3 | WANG Haining, ZOU Yanhong, SUN Hongxu,et al.Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid-gas mode[J].Coordination Chemistry Reviews,2021,438:213906. |
4 | WANG Shuobo, HAN Xu, ZHANG Yihe,et al.Inside-and-out semiconductor engineering for CO2 photoreduction:From recent advances to new trends[J].Small Structures,2021,2(1):2000061. |
5 | 李书文,周严,汪铁林.BiVO4/rGO复合物的制备及其光催化还原CO2研究[J].无机盐工业,2019,51(11):82-87. |
LI Shuwen, ZHOU Yan, WANG Tielin.Study on preparation and photocatalysis-reduction for CO2 of BiVO4/rGO composite[J].Inorganic Chemicals Industry,2019,51(11):82-87. | |
6 | LI Kai, TENG Chao, WANG Shuang,et al.Recent advances in TiO2-based heterojunctions for photocatalytic CO2 reduction with water oxidation:A review[J].Frontiers in Chemistry,2021,9:637501. |
7 | WANG Zhiqiang, ZHU Juncheng, ZU Xiaolong,et al.Selective CO2 photoreduction to CH4 via Pdδ+-assisted hydrodeoxygenation over CeO2 nanosheets[J].Angewandte Chemie,2022,61(30):e202203249. |
8 | LIANG Yujie, WU Xi, LIU Xueyan,et al.Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active cente-rs[J].Applied Catalysis B:Environmental,2022,304:120978. |
9 | XIA Yu, MAN Jianwei, WU Xiaodong,et al.Oxygen-vacancy-assisted construction of Ce-TiO2 aerogel for efficiently boosting photocatalytic CO2 reduction without any sacrifice agent[J].Ceramics International,2023,49(4):6100-6112. |
10 | ZHANG Yumin, ZHAO Jianhong, WANG Hui,et al.Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%[J].Nature Communications,2022,13:58. |
11 | ZHAO Yunxuan, ZHAO Yufei, SHI Run,et al.Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm[J].Advanced Materials,2019,31(16):1806482. |
12 | JIANG Deli, ZHOU Yimeng, ZHANG Qianxiao,et al.Synergistic integration of AuCu co-catalyst with oxygen vacancies on TiO2 for efficient photocatalytic conversion of CO2 to CH4 [J].ACS Applied Materials & Interfaces,2021,13(39):46772-46782. |
13 | WU Siyao, JI Yangqi, WANG Lei,et al.Selective CO2-to-CH4 photoconversion in aqueous solutions catalyzed by atomically dispersed copper sites anchored on ultrathin graphdiyne oxide nano- sheets[J].Solar RRL,2021,5(7):2100200. |
14 | XU Miao, WU Heng, TANG Yawen,et al.One-step in situ synthesis of porous Fe3+-doped TiO2 octahedra toward visible-light photocatalytic conversion of CO2 into solar fuel[J].Microporous and Mesoporous Materials,2020,309:110539. |
15 | MORADI M, KHORASHEH F, LARIMI A.Pt nanoparticles decorated Bi-doped TiO2 as an efficient photocatalyst for CO2 photo-reduction into CH4 [J].Solar Energy,2020,211:100-110. |
16 | XIONG Zhuo, LEI Ze, MA Siming,et al.Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation[J].Applied Catalysis B:Environmental,2017,219:412-424. |
17 | WANG Tao, MENG Xianguang, LIU Guigao,et al. In situ synthesis of ordered mesoporous Co-doped TiO2 and its enhanced photocatalytic activity and selectivity for the reduction of CO2 [J].Journal of Materials Chemistry A,2015,3(18):9491-9501. |
18 | JI Jixiang, LI Ruru, ZHANG Hao,et al.Highly selective photocatalytic reduction of CO2 to ethane over Au-O-Ce sites at micro-interface[J].Applied Catalysis B:Environmental,2023,321:122020. |
19 | YU Yangyang, DONG Xingan, CHEN Peng,et al.Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction[J].ACS Nano,2021,15(9):14453-14464. |
20 | PI Jiacheng, JIA Xiaofang, LONG Zhangwen,et al.Surface and defect engineering coupling of halide double perovskite Cs2NaBiCl6 for efficient CO2 photoreduction[J].Advanced Energy Materials,2022,12(43):2270179. |
21 | YIN Haibo, DONG Feng, WANG Dingsheng,et al.Coupling Cu single atoms and phase junction for photocatalytic CO2 reduction with 100% CO selectivity[J].ACS Catalysis,2022,12(22):14096-14105. |
[1] | SHI Wangfang, ZHANG Yongsheng. Study on NO x degradation performance of concrete-based non-metallic boron doped nitrogen-rich carbon nitride [J]. Inorganic Chemicals Industry, 2025, 57(3): 116-123. |
[2] | LI Zihan, ZHANG Jiaqi, LI Shizhuo, LI Xinyu, LIU Shaozhuo, WANG Yihao, HAO Yucui, LIU Jian, LI Yanhua. Study on synthesis and catalytic mechanism of CdS/g-C3N4 composite photocatalyst [J]. Inorganic Chemicals Industry, 2025, 57(3): 124-132. |
[3] | SUN Qinghao, LI Keyan, GUO Xinwen. Study on photocatalytic benzyl alcohol oxidation coupled with hydrogen production over Pd/ZnIn2S4 nanosheets [J]. Inorganic Chemicals Industry, 2025, 57(1): 113-119. |
[4] | LIU Guangming. Study on photocatalytic and mechanical properties of C3N5/NH2-MIL-125(Ti) modified concrete mortar [J]. Inorganic Chemicals Industry, 2025, 57(1): 120-128. |
[5] | ZHANG Guoqiang, RONG Xilin, XIAO Zhenfang, XUE Ziran, CHENG Hao, FENG Jun, LIU Quan, LU Yao, HUANG Wenyi. Study on preparation and photocatalytic properties of bagasse carbon aerogels loaded with zinc oxide nanoparticles [J]. Inorganic Chemicals Industry, 2024, 56(8): 131-138. |
[6] | WANG Yawen, WANG Fangfang, GENG Siyu, JU Jia, CHEN Lei, CHEN Changdong. Study on preparation and photocatalytic performance of SrTiO3-SrWO4 [J]. Inorganic Chemicals Industry, 2024, 56(7): 143-149. |
[7] | LIU Min, HUANG Xiu, ZHANG Liyuan. Research progress of S-type heterojunction photocatalysts [J]. Inorganic Chemicals Industry, 2024, 56(7): 18-27. |
[8] | LI Jiangpeng, ZHANG Huibin. Synergistic degradation of methylene blue by photo-Fenton and photocatalytic with 3D porous LaFeO3/CeO2/SrTiO3 [J]. Inorganic Chemicals Industry, 2024, 56(5): 141-148. |
[9] | TANG Bei. Preparation of ZnO/g-C3N4 heterojunction photocatalytic material and its degradation of pyridine [J]. Inorganic Chemicals Industry, 2024, 56(4): 133-142. |
[10] | HUANG Jianan, LU Xiaoyu, WANG Mitang. Effect of Ba-La co-doping on degradation of methylene blue dye by TaON [J]. Inorganic Chemicals Industry, 2024, 56(2): 146-151. |
[11] | ZUO Guangling, WANG Minghui, PENG Yunying, DU Jia, YE Hongyong. Study on hnoneycomb-like LaVO4/Bi2O3 heterojunction for photocatalytic degradation of tetracycline hydrochloride [J]. Inorganic Chemicals Industry, 2024, 56(11): 158-164. |
[12] | CUI Xiangdong, LIU Sile. Study on photoelectric performance analysis of g-C3N5 nanorods and removal of Cr(Ⅵ) and methylene blue [J]. Inorganic Chemicals Industry, 2024, 56(10): 159-168. |
[13] | YAN Yu, ZHOU Wenyuan, YANG Yunfei, WU Junshu, WANG Jinshu, SUN Lingmin. Study on surface regulation of sodium ferric silicate photocatalyst and its enhanced Cr(Ⅵ) photoreduction properties [J]. Inorganic Chemicals Industry, 2024, 56(10): 141-150. |
[14] | MA Yihong, CHEN Xingtao, TANG Lei. Treatment of printing wastewater by chemical coagulation-TiO2/g-C3N5 photocatalytic degradation [J]. Inorganic Chemicals Industry, 2024, 56(10): 151-158. |
[15] | YANG Bo, LIANG Zhiyan, LIU Wenyuan, CAO Jiazhen, LIU Xinyue, XING Mingyang. Research progress of application of molybdenum-based catalytic materials for water pollution control [J]. Inorganic Chemicals Industry, 2023, 55(8): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297