Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (4): 169-174.doi: 10.19964/j.issn.1006-4990.2021-0310
• Catalytic Materials • Previous Articles Next Articles
YANG Wenbo(),WU Pan,HE Jian,LIU Changjun,JIANG Wei(
)
Received:
2021-05-11
Online:
2022-04-10
Published:
2022-04-18
Contact:
JIANG Wei
E-mail:924199862@qq.com;weijiang@scu.edu.cn
CLC Number:
YANG Wenbo,WU Pan,HE Jian,LIU Changjun,JIANG Wei. Study on effect of heating rate on structure-activity of g-C3N4 photocatalyst by pyrolysis of urea[J]. Inorganic Chemicals Industry, 2022, 54(4): 169-174.
[1] |
ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride(g-C3N4)-based photocatalysts for artificial photosynjournal and environmental remediation:Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12):7159-7329.
doi: 10.1021/acs.chemrev.6b00075 |
[2] |
CHEN Zhongshan, ZHANG Sai, LIU Yang, et al. Synjournal and fabrication of g-C3N4-based materials and their application in elimination of pollutants[J]. Science of the Total Environment, 2020, 731.Doi: 10.1016/j.scitotenv.2020.139054.
doi: 10.1016/j.scitotenv.2020.139054 |
[3] |
HAO Qiang, JIA Guohua, WEI Wei, et al. Graphitic carbon nitride with different dimensionalities for energy and environmental applications[J]. Nano Research, 2019, 13(1):18-37.
doi: 10.1007/s12274-019-2589-z |
[4] | 孙海杰, 刘欣改, 陈志浩, 等. BiOI/g-C3N4光催化降解甲基橙研究[J]. 无机盐工业, 2021, 53(4):90-94. |
[5] | PANNERI S, GANGULY P, NAIR B N, et al. Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation[J]. Environ.Sci.Pollut.Res., 2017, 24(9):8609-8618. |
[6] | ZHENG Yu, ZHANG Zisheng, LI Chunhu. A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis[J]. J.Photochem.Photobiol.A:Chem., 2017, 332:32-44. |
[7] |
DONG Fan, WU Liwen, SUN Yanjun, et al. Efficient synjournal of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry, 2011, 21:15171-15174.
doi: 10.1039/c1jm12844b |
[8] |
YAO Shanshan, XUE Sikang, PENG Sihuang, et al. Synjournal of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium-sulfur batteries[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(20):17921-17930.
doi: 10.1007/s10854-018-9906-2 |
[9] |
DEVINA R P, RISHABH S, NEHRA S P, et al. Effect of calcination temperature,pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution[J]. RSC Advances, 2019, 9:15381-15391.
doi: 10.1039/C9RA02201E |
[10] | YUAN Yupeng, XU Wentao, YIN Lisha, et al. Large impact of heating time on physical properties and photocatalytic H2 production of g-C3N4 nanosheets synthesized through urea polymerization in Ar atmosphere[J]. International Jouranl of Hydrogen Energy, 2013, 38(30):13159-13163. |
[11] |
NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chemical Reviews, 2017, 117(17):11302-11336.
doi: 10.1021/acs.chemrev.7b00161 |
[12] | WANG Y, WANG X, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:From photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew.Chem. Int.Ed.Engl., 2012, 51(1):68-89. |
[13] | ZHU Junjiang, XIAO Ping, LI Hailong, et al. Graphitic carbon nitride:Synjournal,properties,and applications in catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(19):16449-16465. |
[14] | YANG Jian, LIANG Yujun, LI Kai, et al. One-step synjournal of novel K+ and cyano groups decorated triazine-/heptazine-based g-C3N4 tubular homojunctions for boosting photocatalytic H2 evolution[J]. Applied Catalysis B:Environmental, 2020, 262:1-12. |
[15] | ZHANG Jinshui, ZHANG Mingwen, YANG Can, et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J]. Adv.Mater., 2014, 26(24):4121-4126. |
[16] |
XING Weinan, TU Wenguang, HAN Zhonghui, et al. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Letters, 2018, 3(3):514-519.
doi: 10.1021/acsenergylett.7b01328 |
[17] |
IQBAL W, QIU B, ZHU Q, et al. Self-modified breaking hydrogen bonds to highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen production[J]. Appl.Catal.B: Environ., 2018, 232:306-313.
doi: 10.1016/j.apcatb.2018.03.072 |
[18] | GUTZLER R. Band-structure engineering in conjugated 2D polymers[J]. Phys.Chem.Chem.Phys., 2016, 18(42):29092-29100. |
[19] | SAMANTA S, YADAV R, KUMAR A, et al. Surface modified C,O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production[J]. Applied Catalysis B:Environmental, 2019, 259:1-19. |
[20] | ZHANG Hao, JIA Luhan, WU Pan, et al. Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification[J]. Applied Surface Science, 2020, 527:1-11. |
[21] | JI Xueqiang, YUAN Xiaohong, WU Jiajie, et al. Tuning the photocatalytic activity of graphitic carbon nitride by plasma-based surface modification[J]. ACS Applied Materials & Interfaces, 2017, 9(29):24616-24624. |
[22] |
DONG Guohui, HO Wingkei, WANG Chuanyi. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies[J]. Journal of Materials Chemistry A, 2015, 3(46):23435-23441.
doi: 10.1039/C5TA06540B |
[23] | XIE Yao, LI Yunxiang, HUANG Zhaohui, et al. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution[J]. Applied Catalysis B:Environmental, 2020, 265:1-7. |
[24] |
JAISWAL M, MENON R. Polymer electronic materials:A review of charge transport[J]. Polymer International, 2006, 55(12):1371-1384.
doi: 10.1002/pi.2111 |
[25] | 赵洪霞, 沈晨, 陈秀英, 等. 基于EPR技术的5种纳米金属氧化物光生活性物种的形成研究[J]. 环境科学学报, 2017, 37(7):2609-2615. |
[1] | SHI Wangfang, ZHANG Yongsheng. Study on NO x degradation performance of concrete-based non-metallic boron doped nitrogen-rich carbon nitride [J]. Inorganic Chemicals Industry, 2025, 57(3): 116-123. |
[2] | LI Zihan, ZHANG Jiaqi, LI Shizhuo, LI Xinyu, LIU Shaozhuo, WANG Yihao, HAO Yucui, LIU Jian, LI Yanhua. Study on synthesis and catalytic mechanism of CdS/g-C3N4 composite photocatalyst [J]. Inorganic Chemicals Industry, 2025, 57(3): 124-132. |
[3] | SUN Qinghao, LI Keyan, GUO Xinwen. Study on photocatalytic benzyl alcohol oxidation coupled with hydrogen production over Pd/ZnIn2S4 nanosheets [J]. Inorganic Chemicals Industry, 2025, 57(1): 113-119. |
[4] | LIU Guangming. Study on photocatalytic and mechanical properties of C3N5/NH2-MIL-125(Ti) modified concrete mortar [J]. Inorganic Chemicals Industry, 2025, 57(1): 120-128. |
[5] | ZHANG Guoqiang, RONG Xilin, XIAO Zhenfang, XUE Ziran, CHENG Hao, FENG Jun, LIU Quan, LU Yao, HUANG Wenyi. Study on preparation and photocatalytic properties of bagasse carbon aerogels loaded with zinc oxide nanoparticles [J]. Inorganic Chemicals Industry, 2024, 56(8): 131-138. |
[6] | WANG Yawen, WANG Fangfang, GENG Siyu, JU Jia, CHEN Lei, CHEN Changdong. Study on preparation and photocatalytic performance of SrTiO3-SrWO4 [J]. Inorganic Chemicals Industry, 2024, 56(7): 143-149. |
[7] | LIU Min, HUANG Xiu, ZHANG Liyuan. Research progress of S-type heterojunction photocatalysts [J]. Inorganic Chemicals Industry, 2024, 56(7): 18-27. |
[8] | LI Jiangpeng, ZHANG Huibin. Synergistic degradation of methylene blue by photo-Fenton and photocatalytic with 3D porous LaFeO3/CeO2/SrTiO3 [J]. Inorganic Chemicals Industry, 2024, 56(5): 141-148. |
[9] | TANG Bei. Preparation of ZnO/g-C3N4 heterojunction photocatalytic material and its degradation of pyridine [J]. Inorganic Chemicals Industry, 2024, 56(4): 133-142. |
[10] | HUANG Jianan, LU Xiaoyu, WANG Mitang. Effect of Ba-La co-doping on degradation of methylene blue dye by TaON [J]. Inorganic Chemicals Industry, 2024, 56(2): 146-151. |
[11] | ZUO Guangling, WANG Minghui, PENG Yunying, DU Jia, YE Hongyong. Study on hnoneycomb-like LaVO4/Bi2O3 heterojunction for photocatalytic degradation of tetracycline hydrochloride [J]. Inorganic Chemicals Industry, 2024, 56(11): 158-164. |
[12] | CUI Xiangdong, LIU Sile. Study on photoelectric performance analysis of g-C3N5 nanorods and removal of Cr(Ⅵ) and methylene blue [J]. Inorganic Chemicals Industry, 2024, 56(10): 159-168. |
[13] | YAN Yu, ZHOU Wenyuan, YANG Yunfei, WU Junshu, WANG Jinshu, SUN Lingmin. Study on surface regulation of sodium ferric silicate photocatalyst and its enhanced Cr(Ⅵ) photoreduction properties [J]. Inorganic Chemicals Industry, 2024, 56(10): 141-150. |
[14] | MA Yihong, CHEN Xingtao, TANG Lei. Treatment of printing wastewater by chemical coagulation-TiO2/g-C3N5 photocatalytic degradation [J]. Inorganic Chemicals Industry, 2024, 56(10): 151-158. |
[15] | YANG Bo, LIANG Zhiyan, LIU Wenyuan, CAO Jiazhen, LIU Xinyue, XING Mingyang. Research progress of application of molybdenum-based catalytic materials for water pollution control [J]. Inorganic Chemicals Industry, 2023, 55(8): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297