Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (2): 6-15.doi: 10.19964/j.issn.1006-4990.2021-0294
• Reviews and Special Topics • Previous Articles Next Articles
BAI Xiaojie1(),CAO Defu2,WANG Junhui1,LIU Hao1(
),LIAO Libing2(
)
Received:
2021-05-07
Online:
2022-02-10
Published:
2022-03-14
Contact:
LIU Hao,LIAO Libing
E-mail:1525045235@qq.com;liuhao1398@cugb.edu.cn;clayl@cugb.edu.cn
CLC Number:
BAI Xiaojie,CAO Defu,WANG Junhui,LIU Hao,LIAO Libing. Research progress on semi-solid energy storage batteries[J]. Inorganic Chemicals Industry, 2022, 54(2): 6-15.
[1] |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334(6058):928-935.
doi: 10.1126/science.1212741 |
[2] |
WANG W, LUO Q T, LI B, et al. Recent progress in redox flow ba-ttery research and development[J]. Advanced Functional Materials, 2013, 23(8):970-986.
doi: 10.1002/adfm.v23.8 |
[3] |
DUDUTA M, HO B, WOOD V C, et al. Semi-solid lithium rechar-geable flow battery[J]. Advanced Energy Materials, 2011, 1(4):511-516.
doi: 10.1002/aenm.201100152 |
[4] | 任雅琨, 陈永翀, 冯彩梅, 等. 锂离子液流电池电极悬浮液的电子导电性建模及仿真[J]. 现代科学仪器, 2014(3):84-89. |
[5] |
CHAYAMBUKA K, FRANSAER J, DOMINGUEZ-BENETTON X. Modeling and design of semi-solid flow batteries[J]. Journal of Po-wer Sources, 2019, 434.Doi: 10.1016/j.jpowsour.2019.226740.
doi: 10.1016/j.jpowsour.2019.226740 |
[6] |
SHUKLA G, FRANCO A A. Handling complexity of semisolid redox flow battery operation principles through mechanistic simulations[J]. The Journal of Physical Chemistry C:Nanomaterials and Interfaces, 2018, 122(42):23867-23877.
doi: 10.1021/acs.jpcc.8b06642 |
[7] |
LACROIX R, BIENDICHO J J, MULDER G, et al. Modelling the rheology and electrochemical performance of Li4Ti5O12 and LiNi1/3Co1/3Mn1/3O2 based suspensions for semi-solid flow batteries[J]. Electrochimica Acta, 2019, 304:146-157.
doi: 10.1016/j.electacta.2019.02.107 |
[8] |
SEN S, CHOW C M, MOAZZEN E, et al. Electroactive nanofluids with high solid loading and low viscosity for rechargeable redox flow batteries[J]. Journal of Applied Electrochemistry, 2017, 47(5):593-605.
doi: 10.1007/s10800-017-1063-4 |
[9] |
KURATANI K, ISHIBASHI K, KOMODA Y, et al. Controlling of di-spersion state of particles in slurry and electrochemical properties of electrodes[J]. Journal of the Electrochemical Society, 2019, 166(4):A501-A506.
doi: 10.1149/2.0111904jes |
[10] | 冯彩梅, 张晓虎, 陈永翀, 等. 新型电化学储能技术:半固态锂电池[J]. 科技通报, 2017, 33(8):19-26,179. |
[11] | 陈永翀, 武明晓, 任雅琨, 等. 锂离子液流电池的研究进展[J]. 电工电能新技术, 2012, 31(3):81-85. |
[12] | CHEN H N, LAI N C, LU Y C. Silicon-carbon nanocomposite semi-solid negolyte and its application in redox flow batteries[J]. Che-mistry of Materials, 2017, 29(17):7533-7542. |
[13] |
WU Y Y, CAO D F, BAI X J, et al. Effects of non-ionic surfactants on the rheological,electrical and electrochemical properties of highly loaded silicon suspension electrodes for semi-solid flow ba-tteries[J]. ChemElectroChem, 2020, 7(17):3623-3631.
doi: 10.1002/celc.v7.17 |
[14] |
VENTOSA E, SKOUMAL M, VAZQUEZ F J, et al. Electron bottl-eneck in the charge/discharge mechanism of lithium titanates for batteries[J]. ChemSusChem, 2015, 8(10):1737-1744.
doi: 10.1002/cssc.201500349 |
[15] |
MADEC L, YOUSSRY M, CERBELAUD M, et al. Electronic vs io-nic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of the Electrochemical Society, 2014, 161(5):A693-A699.
doi: 10.1149/2.035405jes |
[16] |
QI Z X, KOENIG G M. A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries[J]. Journal of Power Sources, 2016, 323:97-106.
doi: 10.1016/j.jpowsour.2016.05.033 |
[17] |
VENTOSA E, ZAMPARDI G, FLOX C, et al. Solid electrolyte in-terphase in semi-solid flow batteries:A wolf in sheep′s clothing[J]. Chemical Communications, 2015, 51(81):14973-14976.
doi: 10.1039/C5CC04767F |
[18] |
QI Z X, LIU A L, KOENIG G M. Carbon-free solid dispersion LiCoO2 redox couple characterization and electrochemical evalua-tion for all solid dispersion redox flow batteries[J]. Electrochimica Acta, 2017, 228:91-99.
doi: 10.1016/j.electacta.2017.01.061 |
[19] |
WEI T S, FAN F Y, HELAL A, et al. Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density,fast charge transport,and low-dissipation flow[J]. Advanced Energy Materi-als, 2015, 5(15).Doi: 10.1002/aenm.201500535.
doi: 10.1002/aenm.201500535 |
[20] | DANIEL R G, ZAHILIA C H, SERGI S R, et al. Battery and super-capacitor materials in flow cells.Electrochemical energy storage in a LiFePO4/reduced graphene oxide aqueous nanofluid[J]. Elec-trochimica Acta, 2018, 281(5):594-600. |
[21] |
LI Z, SMITH K C, DONG Y J, et al. Aqueous semi-solid flow cell:Demonstration and analysis[J]. Physical Chemistry Chemical Phy-sics, 2013, 15(38).Doi: 10.1039/c3cp53428f.
doi: 10.1039/c3cp53428f |
[22] |
FENG C M, CHEN Y C, LIU D D, et al. Conductivity and electro-chemical performance of LiFePO4 slurry in the lithium slurry ba-ttery[J]. IOP Conference Series:Materials Science and Engineer-ing, 2017, 207(1).Doi: 10.1088/1757-899X/207/1/012076.
doi: 10.1088/1757-899X/207/1/012076 |
[23] | 高静, 陈剑, 衣宝廉. 半固态LiFePO4液流电池的研究与制备[J]. 电源技术, 2018, 42(11):1690-1693. |
[24] |
QI C L, MA X L, NING G Q, et al. Aqueous slurry of S-doped car-bon nanotubes as conductive additive for lithium ion batteries[J]. Carbon, 2015, 92:245-253.
doi: 10.1016/j.carbon.2015.04.028 |
[25] | TIAN X Q, FENG C M, JIANG H, et al. Surface modification of po-sitive current collector for lithium slurry battery[J]. Advanced Te-chnology of Electrical Engineering and Energy, 2019, 38(9):59-66. |
[26] |
BIENDICHO J J, FLOX C, SANZ L, et al. Static and dynamic stu-dies on LiNi1/3Co1/3Mn1/3O2-based suspensions for semi-solid flow batteries[J]. ChemSusChem, 2016, 9(15):1938-1944.
doi: 10.1002/cssc.v9.15 |
[27] |
ZHENG Q, NIU Z H, YE J, et al. High voltage,transition metal complex enables efficient electrochemical energy storage in a Li-ion battery full cell[J]. Advanced Functional Materials, 2017, 27(4).Doi: 10.1002/adfm.201604299.
doi: 10.1002/adfm.201604299 |
[28] | SONG Z P, ZHOU H S. Towards sustainable and versatile energy storage devices:An overview of organic electrode materials[J]. Energy & Environmental Science, 2013, 6(8):2280-2301. |
[29] |
PENG H J, HUANG J Q, CHENG X B, et al. Review on high-load-ing and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24).Doi: 10.1002/aenm.201700260.
doi: 10.1002/aenm.201700260 |
[30] |
XU S, CHENG Y Y, ZHANG L, et al. An effective polysulfides brid-gebuilder to enable long-life lithium-sulfur flow batteries[J]. Nano Energy, 2018, 51:113-121.
doi: 10.1016/j.nanoen.2018.06.044 |
[31] |
CHEN H N, ZOU Q L, LIANG Z J, et al. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries[J]. Nature Communications, 2015, 6.Doi: 10.1038/ncomms6877.
doi: 10.1038/ncomms6877 |
[32] |
CHEN H N, LU Y C. A high-energy-density multiple redox semi- solid-liquid flow battery[J]. Advanced Energy Materials, 2016, 6(8).Doi: 10.1002/aenm.201502183.
doi: 10.1002/aenm.201502183 |
[33] |
XU S, ZHANG L, ZHANG X P, et al. A self-stabilized suspension catholyte to enable long-term stable Li-S flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(25):12904-12913.
doi: 10.1039/C7TA02110K |
[34] |
DONG K, WANG S P, YU J X. A lithium/polysulfide semi-solid rechargeable flow battery with high output performance[J]. RSC Advances, 2014, 4(88):47517-47520.
doi: 10.1039/C4RA08413F |
[35] |
FAN F Y, WOODFORD W H, LI Z, et al. Polysulfide flow batteries enabled by percolating nanoscale conductor networks[J]. Nano Letters, 2014, 14(4):2210-2218.
doi: 10.1021/nl500740t |
[36] |
SOLOMON B R, CHEN X W, RAPOPORT L, et al. Enhancing the performance of viscous electrode-based flow batteries using lubri-cant-impregnated surfaces[J]. ACS Applied Energy Materials, 2018, 1(8):3614-3621.
doi: 10.1021/acsaem.8b00241 |
[37] |
ZHOU Y C, CONG G T, CHEN H N, et al. A self-mediating redox flow battery:High-capacity polychalcogenide-based redox flow ba-ttery mediated by inherently present redox shuttles[J]. ACS Energy Letters, 2020, 5(6):1732-1740.
doi: 10.1021/acsenergylett.0c00611 |
[38] |
GU S, HUANG X, WANG Q, et al. A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(27):13971-13975.
doi: 10.1039/C7TA04017B |
[39] | 方飞, 张文魁, 施媛媛, 等. 可充电锌电极的研究现状和进展[J]. 浙江化工, 2004, 35(7):23-25. |
[40] | VENTOSA E, AMEDU O, SCHUHMANN W. Aqueous mixed-cation semi-solid hybrid-flow batteries[J]. ACS Applied Energy Materi-als, 2018, 1(10):5158-5162. |
[41] | XIE C X, LI T Y, DENG C Z, et al. A highly reversible neutral zinc/manganese battery for stationary energy storage[J]. Energy & En- vironmental Science, 2020, 13(1):135-143. |
[42] | MUBEEN S, JUN Y S, LEE J, et al. Solid suspension flow batteries using earth abundant materials[J]. ACS Applied Materials & In-terfaces, 2016, 8(3):1759-1765. |
[43] |
LIU J, WANG Y. Preliminary study of high energy density Zn/Ni flow batteries[J]. Journal of Power Sources, 2015, 294:574-579.
doi: 10.1016/j.jpowsour.2015.06.110 |
[44] | ZHU Y G, NARAYANAN T M, TULODZIECKI M, et al. High-en-ergy and high-power Zn-Ni flow batteries with semi-solid electro-des[J]. Sustainable Energy & Fuels, 2020, 4:4076-4085. |
[45] | SOAVI F, RUGGERI I, ARBIZZANI C. Design study of a novel,semi-solid Li/O2 redox flow battery[J]. ECS Transactions, 2016, 72(9):1-9. |
[46] |
RUGGERI I, ARBIZZANI C, SOAVI F. A novel concept of semi-solid,Li redox flow air(O2) battery,a breakthrough towards high energy and power batteries[J]. Electrochimica Acta, 2016, 206:291-300.
doi: 10.1016/j.electacta.2016.04.139 |
[47] |
RUGGERI I, ARBIZZANI C, SOAVI F. Carbonaceous catholyte for high energy density semi-solid Li/O2 flow battery[J]. Carbon, 2018, 130:749-757.
doi: 10.1016/j.carbon.2018.01.056 |
[48] |
MORI R. Semi-solid-state aluminium-air batteries with electrolytes composed of aluminium chloride hydroxide with various hydropho-bic additives[J]. Physical Chemistry Chemical Physics, 2018, 20(47):29983-29988.
doi: 10.1039/C8CP03997F |
[49] |
KUPSCH C, WEIK D, FEIERABEND L, et al. Vector flow imaging of a highly-laden suspension in a zinc-air flow battery model[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2019, 66(4):761-771.
doi: 10.1109/TUFFC.58 |
[50] |
ZHAO Y F, SI S H, WANG L, et al. Electrochemical study on poly-pyrrole microparticle suspension as flowing anode for manganese dioxide rechargeable flow battery[J]. Journal of Power Sources, 2014, 248:962-968.
doi: 10.1016/j.jpowsour.2013.10.008 |
[51] |
CHEN H N, ZHOU Y C, LU Y C. Lithium-organic nanocomposite suspension for high-energy-density redox flow batteries[J]. ACS Energy Letters, 2018, 3(8):1991-1997.
doi: 10.1021/acsenergylett.8b01257 |
[52] |
ZHANG X F, ZHANG P Y, CHEN H N. Organic multiple redox se-mi-solid-liquid suspension for Li-based hybrid flow battery[J]. ChemSusChem, 2021, 14:1-9.
doi: 10.1002/cssc.v14.1 |
[53] |
XING X Q, LIU Q H, LI J, et al. A nonaqueous all organic semisolid flow battery[J]. Chemical Communications, 2019, 55(94):14214-14217.
doi: 10.1039/C9CC07937H |
[54] |
YAN W, WANG C X, TIAN J Q, et al. All-polymer particulate sl-urry batteries[J]. Nature Communications, 2019, 10(1).Doi: 10.1038/s41467-019-10607-0.
doi: 10.1038/s41467-019-10607-0 |
[55] | CAO H J, SI S H, XU X B, et al. Electrochemical study of a three-dimensional Zn-Mn alloy//Mn-doped polyaniline suspension flow battery with enhanced electrochemical performance[J]. Interna-tional Journal of Electrochemical Science, 2020, 15:4188-4202. |
[56] |
MUNOZ-TORRERO D, PALMA J, MARCILLA R, et al. Al-ion battery based on semisolid electrodes for higher specific energy and lower cost[J]. ACS Applied Energy Materials, 2020, 3(3):2285-2289.
doi: 10.1021/acsaem.9b02253 |
[57] | PETEK T J, HOYT N C, SAVINELL R F, et al. Slurry electrodes for iron plating in an all-iron flow battery[J]. Journal of Power So-urces, 2015, 294:620-626. |
[1] | MA Jingyuan, LI Yan, ZHOU Hanjie, LI Jiangang. Research progress of PEO based organic/inorganic composite solid electrolyte [J]. Inorganic Chemicals Industry, 2025, 57(3): 1-8. |
[2] | JIANG Minghui, ZHANG Liqing, PANG Meijing, LIU Chao. Research progress of ion channels for achieving monovalent cation sieving [J]. Inorganic Chemicals Industry, 2025, 57(3): 9-17. |
[3] | LI Chao, WANG Liping, GAO Guimei, ZHANG Yunfeng, HONG Yu, LIU Darui, XU Lijun, CUI Yongjie. Study on reaction mechanism of acid leaching lithium from circulating fluidized bed fly ash [J]. Inorganic Chemicals Industry, 2025, 57(3): 101-107. |
[4] | SONG Jiaxi, JI Renfei, CHEN Jun, LIN Sen, YU Jianguo. Research on characteristics analysis and pretreatment on deeply deactivated power battery ternary cathode materials [J]. Inorganic Chemicals Industry, 2025, 57(2): 44-49. |
[5] | KONG Lingjie, LI Guangbi, XIE Jiahao, YANG Xinhui, BAI Xiaoqin. Research progress on lithium extraction technology from salt lake brine [J]. Inorganic Chemicals Industry, 2025, 57(1): 14-26. |
[6] | ZHANG Shanshan, ZENG Yule, ZHANG Ting, LIN Sen, LIU Chenglin. Research progress of cathode pre-lithiation technology for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2025, 57(1): 1-13. |
[7] | ZHAO Runze, QIAN A′niu. Research progress of lithium recovery for spent lithium-ion batteries and preparation in battery-grade lithium carbonate [J]. Inorganic Chemicals Industry, 2024, 56(12): 70-78. |
[8] | FU Yu, ZHANG Boshuang, YANG Jianmao, LIU Jianyun. Research progress of lithium manganese oxide materials in electrochemical lithium extraction applications [J]. Inorganic Chemicals Industry, 2024, 56(12): 62-69. |
[9] | WANG Ruirui, ZHU Chaoliang, MU Bing, MA Wanxia, FAN Jie, XU Guowang, SHI Yifei, DENG Xiaochuan, QING Binju. Preparation of cubic manganese carbonate by hydrothermal method and its application in extraction of lithium [J]. Inorganic Chemicals Industry, 2024, 56(12): 94-103. |
[10] | GE Jianhua, XIE Minyan, OUYANG Quansheng, SHAO Jiaojing. Advances in regeneration processes of cathode materials for spent power batteries [J]. Inorganic Chemicals Industry, 2024, 56(12): 79-87. |
[11] | CHENG Chunchun, LI Yulong, ZHANG Zhiqiang, ZUO Shuo, QIN Donglan, ZHOU Na, WANG Jiaqin. Study on agglomeration phenomenon and regulation method of lithium carbonate crystal prepared from potassium carbonate [J]. Inorganic Chemicals Industry, 2024, 56(10): 47-54. |
[12] | MA Shuqing, LI Changwen, SHI Chenglong, QIN Yaru. Kinetic study of lithium extraction from solution with iron-based ionic liquid system [J]. Inorganic Chemicals Industry, 2024, 56(9): 60-66. |
[13] | TIAN Peng, ZHANG Haoran, XU Jingang, MOU Chenxi, XU Qianjin, NING Guiling. Study on aluminum sol modified anode and cathode materials for lithium ion batteries [J]. Inorganic Chemicals Industry, 2024, 56(9): 44-53. |
[14] | ZHU Zongjiang, WANG Gang, WEI Yuanfeng, TANG Yanhong, KAKUTA Cheng, LIU Chengbin. Research progress and prospect of resourceful recycling technology of electrolyte from decommissioned lithium⁃ion battery [J]. Inorganic Chemicals Industry, 2024, 56(7): 11-17. |
[15] | SU Baocai, ZHANG Qin, XIE Yuanjian, CAI Pingxiong, PAN Yuanfeng. Advances in synthesis methods and structural modification of LiMnFePO4 materials [J]. Inorganic Chemicals Industry, 2024, 56(7): 28-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297