Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (11): 25-29.doi: 10.19964/j.issn.1006-4990.2020-0655
• Reviews and Special Topics • Previous Articles Next Articles
WANG Huijuan(),WANG Chunyu(
),ZHANG Qiong
Received:
2020-12-02
Online:
2021-11-10
Published:
2021-11-15
Contact:
WANG Chunyu
E-mail:25902892@qq.com;251305296@qq.com
CLC Number:
WANG Huijuan,WANG Chunyu,ZHANG Qiong. Research progress on the preparation of two-dimensional layered nanosheet materials and its application in electrolyzed water[J]. Inorganic Chemicals Industry, 2021, 53(11): 25-29.
[1] | CHU C F, EBIE Y, XU K Q, et al. Characterization of microbial co-mmunity in the two-stage process for hydrogen and methane produc-tion from food waste[J]. Int.J.Hydrogen Energy, 2010, 35(15):8253-8261. |
[2] | 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12):5217-5224. |
[3] | 孙海杰, 刘欣改, 陈志浩, 等. 二氧化硅负载钌催化剂催化氨硼烷水解产氢研究[J]. 无机盐工业, 2020, 52(5):81-85. |
[4] | SHANG X, DONG B, CHAI Y M, et al. In-situ electrochemical acti-vation designed hybrid electrocatalysts for water electrolysis[J]. Sci-en Bulletin, 2018(13):112-120. |
[5] | 刚建航, 董博华, 赵稳稳, 等. 硒化钨花状纳米晶的可控合成及电催化产氢性能研究[J]. 人工晶体学报, 2016, 45(8):2039-2043. |
[6] | LI N, AI L H, JIANG J, et al. Spinel-type oxygen-incorporated Ni3+ self-doped Ni3S4 ultrathin nanosheets for highly efficient and stable oxygen evolution electrocatalysis[J] Journal of Colloid And Inter-face Science, 2020, 564:418-427. |
[7] |
KONG F D, ZHANG S, YIN G P, et al. Preparation of Pt/Irx(IrO2)10-x bifunctional oxygen catalyst for unitized regenerative fuel cell[J]. Journal of Power Sources, 2012, 210:321-326.
doi: 10.1016/j.jpowsour.2012.02.021 |
[8] |
GUO B Y, ZHANG X Y, MA X, et al. RuO2/Co3O4 Nanocubes based on Ru ions impregnation into prussian blue precursor for oxygen evolution[J]. International Journal of Hydrogen Energy, 2020, 45:9575-9582.
doi: 10.1016/j.ijhydene.2020.01.182 |
[9] |
SHAN J Q, GUO C X, ZHU Y H, et al. Charge redistribution-enhan-ced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media[J]. Chem, 2019, 5(2):445-459.
doi: 10.1016/j.chempr.2018.11.010 |
[10] | 谢博尧, 张纪梅, 郝帅帅, 等. 层状双氢氧化物析氧催化剂的研究进展[J]. 材料工程, 2020, 48(1):1-9. |
[11] | 詹天荣, 侯万国. 层状双金属氢氧化物在绿色材料领域中的应用[J]. 化学通报, 2010, 73(7) :608-615. |
[12] |
CHEN S, YANG F, CAO Z F, et al. Enhanced photocatalytic acti-tivity of molybdenum disulfide by compositing ZnAl-LDH[J]. Co-lloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 586.Doi: 10.1016/j.colsurfa.2019.124140.
doi: 10.1016/j.colsurfa.2019.124140 |
[13] |
DING T D, LIN K D, CHEN J, et al. Causes and mechanisms on the toxicity of layered double hydroxide (LDH) to green algae Scene-desmus quadricauda[J]. Science of the Total Environment, 2018, 635.Doi: 10.1016/j.scitotenv.2018.04.222.
doi: 10.1016/j.scitotenv.2018.04.222 |
[14] | 杨炳元, 王忠维, 麻彦龙. 层状双金属氢氧化物在金属腐蚀防护领域的研究进展[J], 表面技术, 2020, 49(12):127-137. |
[15] | 鞠晓丹, 田惠文, 刘昂, 等. ZnTi层状双氢氧化物的制备及其缓蚀和抑菌性能研究[J]. 表面技术, 2020, 49(11):245-251. |
[16] |
ZHANG S C, LIU Z F, CHEN D, et al. Oxygen vacancies engineer-ing in TiO2 homojunction/ZnFe-LDH for enhanced photoelectro-chemical water oxidation[J]. Chemical Engineering Journal, 2020, 395.Doi: 10.1016/j.cej.2020.125101.
doi: 10.1016/j.cej.2020.125101 |
[17] | TAN X, MA Z Q, HE K, et al. Evaluations on gridded precipitation products spanning more than half a century over the Tibetan Plate-au and its surroundings[J]. Journal of Hydrology, 2020, 582:112-123. |
[18] | 韩银凤, 张瑞林. 以泡沫镍为基底的纳米片层状Ni2+-Fe3+-V3+ LDHs的制备及其电催化析氧性能研究[J]. 化学试剂, 2020, 42(1):8-12. |
[19] | 宋明龙, 龙小柱. 镍掺杂锌铝层状双氢氧化物光催化剂的研究[J]. 化工新型材料, 2020, 48(4):191-195. |
[20] | 王燕勇. 层状双金属氢氧化物及其衍生物电催化性能的研究[D]. 长沙:湖南大学, 2018. |
[21] |
OCTAVIAN D P, STAMATE A E, RODICA Z, et al. Mechano-che-mical versus co-precipitation for the preparation of Y-modified LDHs for cyclohexene oxidation and Claisen-Schmidt condensa-tions[J]. Applied Catalysis A:General, 2020, 605(5).Doi: org/10.1016/j.apcata.2020.117797
doi: org/10.1016/j.apcata.2020.117797 |
[22] | 庄巍, 郭为民. Nd掺杂的Ni-Al LDHs的制备及其电化学性能研究[J]. 电源技术, 2017(9):1327-1331. |
[23] | QIAN L, CHEN W, LIU M M, et al. One-step electrodeposition of S-doped Cobalt-Nickel layered double hydroxides on conductive substrates and their electrocatalytic activity in alkaline media[J]. ChemElectroChen, 2016, 3(6):950-958. |
[24] |
SAHAR R, GHODSI M Z, ABOLFAZL Z, et al. Designer 3D Co-Al-layered double hydroxide@N,S doped graphenehollow archi-tecture decorated with Pd nanoparticles for Sonogashira couplin-gs[J]. Applied Surface Science, 2019, 496(1).Doi: 10.1016/j.apsusc.2019.143599.
doi: 10.1016/j.apsusc.2019.143599 |
[25] |
LI S Z, LIU J Y, DUAN S, et al. Electrocatalytic performance of sul-fur-doped nickel-iron layered double hydroxide for oxygen evolution[J]. Chinese Journal of Catalysis, 2020, 41(5):847-852.
doi: 10.1016/S1872-2067(19)63356-5 |
[26] |
XIAO Y H, SU D C, WANG X Z. Research on layer spacing adjus-tment of layered bishydroxy composite metal oxide and its capaci-tor performance[J]. Science China Materials, 2018, 61(2):263-272.
doi: 10.1007/s40843-017-9138-1 |
[27] | 狄广兰, 朱志良. 层状双金属氢氧化物基光催化剂研究进展[J]. 化学通报, 2017, 80(3):230-238. |
[28] | LONG X, LI J K, XIAO S, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction[J]. Angewandte Chemie(Internatio-nal ed.in English), 2014, 53(29):7584-7592. |
[29] |
CHEN H, HU L F, CHEN M, et al. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor elec-trode materials[J]. Advanced Functional Materials, 2014, 24(7):934-942.
doi: 10.1002/adfm.v24.7 |
[30] |
RAJMOHAN R, NALLAL M, KANG H, et al. Self-assembled 3D hierarchical MnCO3/NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions[J]. Journal of Colloid and Interface Science, 2020, 566:224-233.
doi: 10.1016/j.jcis.2020.01.086 |
[31] | 贺学智, 李炳杰, 吴志坚, 等. 层状双金属氢氧化物Zn(Cu)/Al-LDHs 的制备及其光催化还原二氧化碳的研究[J]. 分子催化, 2013, 27(1):70-75. |
[32] | DINH K N, ZHENG P L, DAI Z F, et al. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctio-nal electrocatalyst for overall water splitting[J]. Small, 2018, 14(8):170-181. |
[33] | LI Y, ZHANG L, XIANG X, et al. Engineering of ZnCo-layered do-uble hydroxide nanowalls toward high-efficiency electrochemical water oxidation[J]. Journal of Materials Chemistry A, 2014, 33(2):13250-13258. |
[34] | 任锦, 梁良, 周瑜, 等. 功能化层状双金属氢氧化物材料的应用进展[J]. 材料科学与工程学报, 2019, 28(3):1879-1883. |
[35] |
GONG M, LI Y, WANG H, et al. An advanced Ni-Fe layered dou-ble hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23):8452-8455.
doi: 10.1021/ja4027715 |
[36] |
YU C, LIU Z B, HAN X T, et al. NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free highac-tive electrocatalysts for water oxidation[J]. Carbon, 2016, 110:1-7.
doi: 10.1016/j.carbon.2016.08.020 |
[37] |
JIA Y, ZHANG L, GAO G, et al. A heterostructure coupling of ex-foliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting[J]. Advanced Materials, 2017, 29(17).Doi: 10.1002/adma.201700017.
doi: 10.1002/adma.201700017 |
[38] | HAN N, ZHAO F P, LI Y G. Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for elec-trocatalytic water oxidation[J]. Journal of Materials Chemistry A, 2015(3):16348-16353. |
[39] |
XIA D C, ZHOU L, QIAO S, et al. Graphene/Ni-Fe layered double-hydroxide composite as highly active electrocatalyst for water oxi-dation[J]. Materials Research Bulletin, 2016, 74(2):441-446.
doi: 10.1016/j.materresbull.2015.11.007 |
[40] |
龙霞, 王亚, 琼鞠敏, 等. 过渡金属基层状双羟基化合物的调控及其在电化学水氧化中的应用[J]. 应用化学, 2018, 35(8):881-890.
doi: 10.11944/j.issn.1000-0518.2018.08.180130 |
[41] |
LIU R, WANG Y Y, LIU D D, et al. Water-plasma-enabled exfoli-ation of ultrathin layered double hydroxide nanosheets with multi-vacancies for water oxidation[J]. Advanced Materials, 2017, 29(30).Doi: org/10.1002/adma.201701546.
doi: org/10.1002/adma.201701546 |
[42] |
WANG Y, ZHANG Y, LIU Z, et al. Layered double hydroxide nano-sheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angewandte Chemie International Edition, 2017, 56(21):5867-5871.
doi: 10.1002/anie.201701477 |
[1] | SHI Wangfang, ZHANG Yongsheng. Study on NO x degradation performance of concrete-based non-metallic boron doped nitrogen-rich carbon nitride [J]. Inorganic Chemicals Industry, 2025, 57(3): 116-123. |
[2] | LI Zihan, ZHANG Jiaqi, LI Shizhuo, LI Xinyu, LIU Shaozhuo, WANG Yihao, HAO Yucui, LIU Jian, LI Yanhua. Study on synthesis and catalytic mechanism of CdS/g-C3N4 composite photocatalyst [J]. Inorganic Chemicals Industry, 2025, 57(3): 124-132. |
[3] | LUO Chengling, FAN Xiaofan. Research progress of microstructure-regulated catalysts for urea oxidation reactions [J]. Inorganic Chemicals Industry, 2025, 57(2): 26-35. |
[4] | SUN Qinghao, LI Keyan, GUO Xinwen. Study on photocatalytic benzyl alcohol oxidation coupled with hydrogen production over Pd/ZnIn2S4 nanosheets [J]. Inorganic Chemicals Industry, 2025, 57(1): 113-119. |
[5] | LIU Guangming. Study on photocatalytic and mechanical properties of C3N5/NH2-MIL-125(Ti) modified concrete mortar [J]. Inorganic Chemicals Industry, 2025, 57(1): 120-128. |
[6] | ZHANG Guoqiang, RONG Xilin, XIAO Zhenfang, XUE Ziran, CHENG Hao, FENG Jun, LIU Quan, LU Yao, HUANG Wenyi. Study on preparation and photocatalytic properties of bagasse carbon aerogels loaded with zinc oxide nanoparticles [J]. Inorganic Chemicals Industry, 2024, 56(8): 131-138. |
[7] | WANG Ting, ZHANG Wenwen, MAO Qing, LÜ Li, LIU Changzhen. Research progress of catalytic system and materials for electrocatalytic reduction of carbon dioxide to ethanol [J]. Inorganic Chemicals Industry, 2024, 56(7): 1-10. |
[8] | WANG Yawen, WANG Fangfang, GENG Siyu, JU Jia, CHEN Lei, CHEN Changdong. Study on preparation and photocatalytic performance of SrTiO3-SrWO4 [J]. Inorganic Chemicals Industry, 2024, 56(7): 143-149. |
[9] | LIU Min, HUANG Xiu, ZHANG Liyuan. Research progress of S-type heterojunction photocatalysts [J]. Inorganic Chemicals Industry, 2024, 56(7): 18-27. |
[10] | LI Jiangpeng, ZHANG Huibin. Synergistic degradation of methylene blue by photo-Fenton and photocatalytic with 3D porous LaFeO3/CeO2/SrTiO3 [J]. Inorganic Chemicals Industry, 2024, 56(5): 141-148. |
[11] | XIE Jiang, GUO Ge, QIU Jie. Treatment of methylene blue simulated wastewater by supported activated carbon particle with three-dimensional electrode method [J]. Inorganic Chemicals Industry, 2024, 56(5): 78-86. |
[12] | TANG Bei. Preparation of ZnO/g-C3N4 heterojunction photocatalytic material and its degradation of pyridine [J]. Inorganic Chemicals Industry, 2024, 56(4): 133-142. |
[13] | ZHOU Xuan, LI Mengrui, CHEN Yichen, FAN Huiqiang, WANG Bin, YUAN Gang. Research progress of nickel-based phosphide composites in improving of catalytic water electrolysis for hydrogen evolution performance [J]. Inorganic Chemicals Industry, 2024, 56(4): 8-15. |
[14] | HUANG Jianan, LU Xiaoyu, WANG Mitang. Effect of Ba-La co-doping on degradation of methylene blue dye by TaON [J]. Inorganic Chemicals Industry, 2024, 56(2): 146-151. |
[15] | CHEN Xingliang, FAN Wenjuan, CHANG Hui, HUANG Haiping, JIANG Zhiqiang. Study on collaborative strategy between Fe3+ and Ni-based metal-organic frameworks for boosting electrocatalytic oxygen evolution [J]. Inorganic Chemicals Industry, 2024, 56(2): 152-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297