Inorganic Chemicals Industry ›› 2024, Vol. 56 ›› Issue (4): 8-15.doi: 10.19964/j.issn.1006-4990.2023-0399
• Reviews and Special Topics • Previous Articles Next Articles
ZHOU Xuan(), LI Mengrui, CHEN Yichen, FAN Huiqiang, WANG Bin, YUAN Gang
Received:
2023-08-07
Online:
2024-04-10
Published:
2024-04-18
CLC Number:
ZHOU Xuan, LI Mengrui, CHEN Yichen, FAN Huiqiang, WANG Bin, YUAN Gang. Research progress of nickel-based phosphide composites in improving of catalytic water electrolysis for hydrogen evolution performance[J]. Inorganic Chemicals Industry, 2024, 56(4): 8-15.
1 |
LIU Ping, RODRIGUEZ J A. Catalysts for hydrogen evolution from the[NiFe]hydrogenase to the Ni2P(001) surface:The importance of ensemble effect[J]. Journal of the American Chemical Society, 2005, 127(42):14871-14878.
pmid: 16231942 |
2 |
POPCZUN E J, MCKONE J R, READ C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(25):9267-9270.
doi: 10.1021/ja403440e pmid: 23763295 |
3 |
JAKŠIĆ M M. Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory[J]. Journal of Molecular Catalysis, 1986, 38(1/2):161-202.
doi: 10.1016/0304-5102(86)87056-0 |
4 | 马洁, 刘顺诚, 江琳才, 等. 纳米晶Ni-Mo合金复合镀层中钼含量对析氢反应的影响[J]. 化学学报, 1997, 55(4):363-369. |
MA Jie, LIU Shuncheng, JIANG Lincai, et al. Effects of molybdenum content of nanocrystalline Ni-Mo alloy composite coating on hydrogen evolution reaction[J]. Acta Chimica Sinica, 1997, 55(4):363-369. | |
5 |
TRASATTI S. Work function,electronegativity,and electrochemical behaviour of metals[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 39(1):163-184.
doi: 10.1016/S0022-0728(72)80485-6 |
6 |
LI Yang, DONG Zihao, JIAO Lifang. Multifunctional transition metal-based phosphides in energy-related electrocatalysis[J]. Advanced Energy Materials, 2020, 10(11):1902104.
doi: 10.1002/aenm.v10.11 |
7 | ZHANG Bing, YANG Fan, LIU Xiaodong, et al. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting[J]. Applied Catalysis B:Environmental, 2021, 298:120494. |
8 | 戴凌杰. 多组分过渡金属磷化物复合材料的制备及其水分解性能研究[D]. 长春: 吉林大学, 2022. |
DAI Lingjie. Preparation of multicomponent transition metal phosphate composite and study on its hydrolysis performance[D]. Changchun: Jilin University, 2022. | |
9 |
GUO Baoyu, WANG Yiwei, DONG Bin. Controllable leaching of Ag2WO4 template for production of Ni-Co-P nanosheets as electrocatalyst for hydrogen evolution[J]. International Journal of Electrochemical Science, 2022, 17(9):22091.
doi: 10.20964/2022.09.03 |
10 |
WU Konglin, SUN Kaian, LIU Shoujie, et al. Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution[J]. Nano Energy, 2021, 80:105467.
doi: 10.1016/j.nanoen.2020.105467 |
11 |
WANG Yue, CHEN Zhi, LI Qichang, et al. Porous needle-like Fe-Ni-P doped with Ru as efficient electrocatalyst for hydrogen generation powered by sustainable energies[J]. Nano Research, 2023, 16(2):2428-2435.
doi: 10.1007/s12274-022-4980-4 |
12 | 瞿国兴. 非金属元素掺杂型电催化剂的制备及其催化电解水性能研究[D]. 成都: 电子科技大学, 2020. |
QU Guoxing. The study of nonmetal-doped electrocatalyst synthesis and their performances in catalyzing water electrolysis[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
13 |
ZHANG Xiangrui, SHI Xuerong, WANG Peijie, et al. Bio-inspired design of NiFeP nanoparticles embedded in(N,P) co-doped carbon for boosting overall water splitting[J]. Dalton Transactions, 2023, 52(20):6860-6869.
doi: 10.1039/D3DT00583F |
14 |
SONG D, HONG D, KWON Y, et al. Highly porous Ni-P electrode synthesized by an ultrafast electrodeposition process for efficient overall water electrolysis[J]. Journal of Materials Chemistry A, 2020, 8(24):12069-12079.
doi: 10.1039/D0TA03739G |
15 |
WANG Yuan, ARANDIYAN H, CHEN Xianjue, et al. Microwave-induced plasma synthesis of defect-rich,highly ordered porous phosphorus-doped cobalt oxides for overall water electrolysis[J]. The Journal of Physical Chemistry C, 2020, 124(18):9971-9978.
doi: 10.1021/acs.jpcc.0c01135 |
16 | KHALID M, BHARDWAJ P A, HONORATO A M B, et al. Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxygen reduction,oxygen evolution,and hydrogen evolution reactions[J]. Catalysis Science & Technology, 2020, 10(19):6420-6448. |
17 |
NIU Shanshan, YANG Ji, QI Haifeng, et al. Single-atom Pt promoted Mo2C for electrochemical hydrogen evolution reaction[J]. Journal of Energy Chemistry, 2021, 57:371-377.
doi: 10.1016/j.jechem.2020.08.028 |
18 | 段钱花, 王森林, 王丽品. 电沉积多孔复合Ni-P/LaNi5电极及其析氢电催化性能[J]. 物理化学学报, 2013, 29(1):123- 130. |
DUAN Qianhua, WANG Senlin, WANG Lipin. Electro-deposition of the porous composite Ni-P/LaNi5 electrode and its electro-catalytic performance toward hydrogen evolution reaction[J]. Acta Physico-Chimica Sinica, 2013, 29(1):123-130.
doi: 10.3866/PKU.WHXB201210095 |
|
19 | TIAN Gaoqi, WEI Songrui, GUO Zhangtao, et al. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Science & Technology, 2021, 77:108-116. |
20 |
ZHAO Hongwu, LIANG Jicai, ZHENG Qifeng. Construction of core-shell heterostructure NiO@Co0.5Fe0.5P as efficient bifunctional electrocatalysts for overall water splitting[J]. Journal of Alloys and Compounds, 2022, 905:164264.
doi: 10.1016/j.jallcom.2022.164264 |
21 | SUN Hongming, YAN Zhenhua, LIU Fangming, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): e1806326. |
22 |
MA Xingxing, CHANG Yaqing, ZHANG Zhe, et al. Forest-like NiCoP@Cu3P supported on copper foam as a bifunctional catalyst for efficient water splitting[J]. Journal of Materials Chemistry A, 2018, 6(5):2100-2106.
doi: 10.1039/C7TA09619D |
23 | DING Yu, MIAO Boqiang, LI Shuni, et al. Benzylamine oxidation boosted electrochemical water-splitting:Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam[J]. Applied Catalysis B:Environmental, 2020, 268:118393. |
24 |
ZENG Min, LI Yanguang. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(29):14942-14962.
doi: 10.1039/C5TA02974K |
25 | 孙善善. 电沉积法制备镍磷化物多孔电极及其析氢性能研究[D]. 镇江: 江苏大学, 2020. |
SUN Shanshan. Preparation of nickel phosphide porous electrode by electrodeposition and its hydrogen evolution performance[D]. Zhenjiang: Jiangsu University, 2020. | |
26 |
XIANG Zhongcheng, ZHANG Zhong, XU Xijin, et al. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution[J]. Carbon, 2016, 98:84-89.
doi: 10.1016/j.carbon.2015.10.071 |
27 |
LI Jiachen, ZHANG Chi, MA Huijun, et al. Modulating interfacial charge distribution of single atoms confined in molybdenum phosphosulfide heterostructures for high efficiency hydrogen evoluti-on[J]. Chemical Engineering Journal, 2021, 414:128834.
doi: 10.1016/j.cej.2021.128834 |
28 | 葛晨娇, 崔伟, 田坚. 生长在碳布上的磷化镍纳米颗粒膜的制备及其电催化析氢反应性能[C]// 中国新材料技术协会. 第三届国防装备轻质高强新材料应用研讨会, 2015. |
29 |
YANG Fan, YANG Shuqin, NIU Qianqian, et al. Fabrication of a 3D self-supporting Ni-P/Ni2P/CC composite and its robust hydrogen evolution reaction properties in alkaline solution[J]. New Journal of Chemistry, 2020, 44(20):8183-8190.
doi: 10.1039/D0NJ00727G |
30 |
CHEN Xiaogang, ZHAO Xuan, WANG Yuanyuan, et al. Layered Ni-Co-P electrode synthesized by CV electrodeposition for hydrogen evolution at large currents[J]. ChemCatChem, 2021, 13(16):3619-3627.
doi: 10.1002/cctc.v13.16 |
31 |
LU Bowen, WANG Yanhui, LI Wei, et al. Ni-P alloy@carbon nanotubes immobilized on the framework of Ni foam as a 3D hierarchical porous self-supporting electrode for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(45):23245-23253.
doi: 10.1016/j.ijhydene.2021.04.139 |
32 |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
doi: 10.1126/science.1102896 pmid: 15499015 |
33 |
GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
doi: 10.1038/nmat1849 pmid: 17330084 |
34 |
BALANDIN A A, GHOSH S, BAO Wenzhong, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
doi: 10.1021/nl0731872 pmid: 18284217 |
35 |
QIU Bocheng, ZHOU Yi, MA Yunfei, et al. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis[J]. Scientific Reports, 2015, 5:8591.
doi: 10.1038/srep08591 pmid: 25716132 |
36 | ZOU Haiyuan, LI Ge, DUAN Lele, et al. In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting[J]. Applied Catalysis B:Environmental, 2019, 259:118100. |
37 |
DING Guosheng, ZHANG Yixin, DONG Jing, et al. Fabrication of Ni2P/Ni5P4 nanoparticles embedded in three-dimensional N-doped graphene for acidic hydrogen evolution reaction[J]. Materials Letters, 2021, 299:130071.
doi: 10.1016/j.matlet.2021.130071 |
38 |
HUANG Changshui, LI Yongjun, WANG Ning, et al. Progress in research into 2D graphdiyne-based materials[J]. Chemical Reviews, 2018, 118(16):7744-7803.
doi: 10.1021/acs.chemrev.8b00288 pmid: 30048120 |
39 |
YIN Xuepeng, LU D, WANG Jiawei, et al. 2D/2D heterojunction of Ni-Co-P/graphdiyne for optimized electrocatalytic overall water splitting[J]. ChemCatChem, 2019, 11(22):5407-5411.
doi: 10.1002/cctc.201901173 |
40 |
GAO Juan, LI Yaxin, YU Xin, et al. Graphdiyne reinforced multifunctional Cu/Ni bimetallic Phosphides-Graphdiyne hybrid nanostructure as high performance electrocatalyst for water splitting[J]. Journal of Colloid and Interface Science, 2022, 628:508-518.
doi: 10.1016/j.jcis.2022.07.150 pmid: 35933868 |
41 | XU Xiaodan, ZHANG Yelong, SUN Hongyang, et al. Progress and perspective:MXene and MXene-based nanomaterials for high-performance energy storage devices[J]. Advanced Electronic Materials, 2021, 7(7):1-16. |
42 |
Luna TIE, LI Neng, YU Chongfei, et al. Self-supported nonprecious MXene/Ni3S2 electrocatalysts for efficient hydrogen generation in alkaline media[J]. ACS Applied Energy Materials, 2019, 2(9):6931-6938.
doi: 10.1021/acsaem.9b01529 |
43 |
KUZNETSOV D A, CHEN Zixuan, KUMAR P V, et al. Single site cobalt substitution in 2D molybdenum carbide(MXene) enhances catalytic activity in the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(44):17809-17816.
doi: 10.1021/jacs.9b08897 |
44 | LEE S, KIM E H, YU S, et al. Polymer-laminated Ti3C2T X MXene electrodes for transparent and flexible field-driven electronics[J]. Journal of the American Chemical Society, 2021, 15(5):8940-8952. |
45 |
KELLY T G, CHEN J G. Metal overlayer on metal carbide substrate:Unique bimetallic properties for catalysis and electrocatalysis[J]. Chemical Society Reviews, 2012, 41(24):8021-8034.
doi: 10.1039/c2cs35165j |
46 | WU Yuting, NIE Ping, WANG Jiang, et al. Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance[J]. ACS Applied Materials & Interfaces, 2017, 9(45):39610-39617. |
47 |
LUKATSKAYA M R, KOTA S, LIN Zifeng, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2(8):17105.
doi: 10.1038/nenergy.2017.105 |
48 |
GHIDIU M, LUKATSKAYA M R, ZHAO Mengqiang, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81.
doi: 10.1038/nature13970 |
49 |
WANG Pengyan, PU Zonghua, LI Wenqiang, et al. Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting[J]. Journal of Catalysis, 2019, 377:600- 608.
doi: 10.1016/j.jcat.2019.08.005 |
50 |
PU Zonghua, LIU Tingting, AMIINU I S, et al. Transition-metal phosphides:Activity origin,energy-related electrocatalysis applications,and synthetic strategies[J]. Advanced Functional Materials, 2020, 30(45):2004009.
doi: 10.1002/adfm.v30.45 |
51 |
LUO Xu, JI Pengxia, WANG Pengyan, et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/Ni x P y hollow heterostructure nanorods for efficient overall water splitting[J]. Advanced Energy Materials, 2020, 10(17):1903891.
doi: 10.1002/aenm.v10.17 |
52 | JI Pengxia, JIN Huihui, XIA Hongliang, et al. Double metal diphosphide pair nanocages coupled with P-doped carbon for accelerated oxygen and hydrogen evolution kinetics[J]. ACS Applied Materials & Interfaces, 2020, 12(1):727-733. |
53 |
LV Zepeng, WANG Meng, LIU Dong, et al. Synergetic effect of Ni2P and MXene enhances catalytic activity in the hydrogen evolution reaction[J]. Inorganic Chemistry, 2021, 60(3):1604-1611.
doi: 10.1021/acs.inorgchem.0c03072 pmid: 33428387 |
[1] | LUO Chengling, FAN Xiaofan. Research progress of microstructure-regulated catalysts for urea oxidation reactions [J]. Inorganic Chemicals Industry, 2025, 57(2): 26-35. |
[2] | ZHANG Feigang, LIU Zhongli. Study on application of CuO/g-C3N4 composites in organic dye degradation and supercapacitors [J]. Inorganic Chemicals Industry, 2025, 57(1): 129-136. |
[3] | XIE Jiang, GUO Ge, QIU Jie. Treatment of methylene blue simulated wastewater by supported activated carbon particle with three-dimensional electrode method [J]. Inorganic Chemicals Industry, 2024, 56(5): 78-86. |
[4] | CHEN Xingliang, FAN Wenjuan, CHANG Hui, HUANG Haiping, JIANG Zhiqiang. Study on collaborative strategy between Fe3+ and Ni-based metal-organic frameworks for boosting electrocatalytic oxygen evolution [J]. Inorganic Chemicals Industry, 2024, 56(2): 152-158. |
[5] | CHEN Junxue, MO Jianxin, ZHOU Zhiyu, LI Zhonglin, WANG Ding, LI Yuping, HU Yongjun, JIANG Xuexian, LI Yibing. Study on synthesis of NaFe x Cr y (SO4)2(OH)6 and their electrochemical properties [J]. Inorganic Chemicals Industry, 2023, 55(8): 71-76. |
[6] | LAN Yinghua, CHEN Yanmei, MA Ruixiao, ZHANG Yanhui. Preparation and photocatalytic performance of Ce-Ti oxide-attapulgite composites [J]. Inorganic Chemicals Industry, 2023, 55(4): 133-140. |
[7] | WU Luming, YU Haibin, WANG Yaquan. Study on preparation of porous carbon materials and oxygen reduction properties of their metal phosphide [J]. Inorganic Chemicals Industry, 2023, 55(4): 104-110. |
[8] | WANG Yansu, LIU Guozhu, YU Haibin. Research progress of non-precious metal catalysts for propane dehydrogenation [J]. Inorganic Chemicals Industry, 2023, 55(12): 1-11. |
[9] | WANG Dian,SU Qiong,PANG Shaofeng,CAO Shijun,KANG Lihui,LIANG Lichun,WANG Yanbin,LI Zhaoxia. Study on high-performance supercapacitors based on Fe2O3/biomass carbon composites [J]. Inorganic Chemicals Industry, 2022, 54(3): 59-65. |
[10] | ZHENG Yangzi,JIN Mingshang. Strategy to improve catalytic performance of Pt-based core-shell catalysts for fuel cells [J]. Inorganic Chemicals Industry, 2022, 54(11): 1-7. |
[11] | WANG Wei,LIU Wei,WU Yang,YANG Shenshen. Research progress on molybdenum disulfide-based anode materials for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2022, 54(10): 87-95. |
[12] | Jiang Yuncai,Li Xuemei,Wu Zhaoxian,Cao Changdie,Mei Yi,Lian Peichao. Research progress on preparation and application in energy storage of black phosphorus [J]. Inorganic Chemicals Industry, 2021, 53(6): 59-71. |
[13] | Yang Huanhuan,Yu Binlu,Wang Jiahong,Yu Xuefeng. Preparation,surface functionalization and photoelectrocatalysis of two-dimensional black phosphorus [J]. Inorganic Chemicals Industry, 2021, 53(5): 13-20. |
[14] | CHEN Jingjuan,LÜ Lin,WAN Houzhao,WANG Hao. Recent progress on Cu-based chalcogenides for electrocatalytic carbon dioxide reduction to formate [J]. Inorganic Chemicals Industry, 2021, 53(12): 14-20. |
[15] | Ma Ruixiao,Xu Juan,Zhang Yanhui. Application status of attapulgite-based composite materials in field of catalysis [J]. Inorganic Chemicals Industry, 2021, 53(10): 22-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297