Inorganic Chemicals Industry ›› 2020, Vol. 52 ›› Issue (1): 17-21.doi: 10.11962/1006-4990.2019-0176
• Reviews and Special Topics • Previous Articles Next Articles
Received:
2019-07-16
Online:
2020-01-10
Published:
2020-02-26
Contact:
Du Miao
E-mail:dma1980@163.com
CLC Number:
Du Miao,Zhang Xin. Progress in application research of two-dimensional nanomaterials in water treatment[J]. Inorganic Chemicals Industry, 2020, 52(1): 17-21.
[1] | Ball P, Garwin L . Science at the atomic scale[J]. Nature, 1992, 355:761-764. |
[2] | Wu R C, Qu J H, Chen Y S . Magnetic powder MnO-Fe2O3 composite—a novel material for the removal of azo-dye from water[J]. Water Research, 2005,39(4):630-638. |
[3] | Borah L, Goswami M, Phukan P . Adsorption of methylene blue and eosin yellow using porous carbon prepared from tea waste:Adsorption equilibrium,kinetics and thermodynamics study[J]. Journal of Environmental Chemical Engineering, 2015,3(2):1018-1028. |
[4] | Li Z L, Chen J Y, Ge Y Y . Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes[J]. Chemical Engineering Journal, 2017,308:809-817. |
[5] | Novoselov K S, Geim A K, Morozov S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306:666-669. |
[6] | Lin Y, Williams T V, Connell J W . Soluble,exfoliated hexagonal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 2010,1(1):277-283. |
[7] | Du M, Wu Y Z, Hao X P . A facile chemical exfoliation method to obtain large size boron nitride nanosheets[J]. CrystEngComm, 2013,15(9):1782-1786. |
[8] | Chhowalla M, Shin H S, Eda G , et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013,5(4):263-275. |
[9] | Zhang H . Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015,9(10):9451-9469. |
[10] | Geim A K, Novoselov K S . The rise of graphene[J]. Nature Materials, 2007,6(3):183-191. |
[11] | Geim A K . Graphene:status and prospects[J]. Science, 2009,324:1530-1534. |
[12] | Wu J S, Pisula W, Müllen K . Graphenes as potential material for electronics[J]. Chemical Reviews, 2007,107(3):718-747. |
[13] | Rao C N R, Sood A K, Voggu R , et al. Some novel attributes of graphene[J]. The Journal of Physical Chemistry Letters, 2010,1(2):572-580. |
[14] | Allen M J, Tung V C, Kaner R B . Honeycomb carbon:a review of graphene[J]. Chemical Reviews, 2010,110(1):132-145. |
[15] | Chong J Y, Wang B, Li K . Water transport through graphene oxide membranes:the roles of driving forces[J]. Chemical Communications, 2018,54(20):2554-2557. |
[16] | Hao J Q, Wang Z T, Xiao C F , et al. In situ reduced graphene oxidebased polyurethane sponge hollow tube for continuous oil removal from water surface[J]. Environment Science & Pollution Research, 2018,25:4837-4845. |
[17] | Feng Y, Wang Z W, Zhang R X , et al. Anti-fouling graphene oxidebased nanocomposites membrane for oil-water emulsion separation[J]. Water Science & Technology, 2018,77(5):1179-1185. |
[18] | Tabish T A, Memon F A, Gomez D E , et al. A facile synjournal of porous graphene for efficient water and wastewater treatment[J]. Scientific Reports, 2018,8(1):1-14. |
[19] | Li Z W, Qiu Y H, Li K , et al. Optimal design of graphene nanopores for seawater desalination[J]. The Journal of Chemical Physics, 2018,148(1):1-9. |
[20] | Seo D H, Pineda S, Woo Y C , et al. Anti-fouling graphene-based membranes for effective water desalination[J]. Nature Communications, 2018,9(1):1-12. |
[21] | Huang J K, Yan Z F . Adsorption mechanism of oil by resilient graphene aerogels from oil-water emulsion[J]. Langmuir, 2018,34(5):1890-1898. |
[22] | Wang Y K, Wang B, Wang J H , et al. Superhydrophobic and super-oleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation[J]. 2018,344:849-856. |
[23] | Lin Y, Connell J W . Advances in 2D boron nitride nanostructures:nanosheets,nanoribbons,nanomeshes,and hybrids with graphene[J]. Nanoscale, 2012,4(22):6908-6939. |
[24] | Blase X, Vita A D, Charlier J C , et al. Frustration effects and microscopic growth mechanisms for BN nanotubes[J]. Physical Review Letters, 1998,80(8):1666-1669. |
[25] | Charlier J C, Blase X, de Vita A , et al. Microscopic growth mechanisms for carbon and boron-nitride nanotubes[J]. Applied Physics A, 1999,68(3):267-273. |
[26] | Golberg D, Bando Y . Unique morphologies of boron nitride nanotubes[J]. Applied Physics Letters, 2001,79(3):415-417. |
[27] | Chen C, Wang J M, Liu D , et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation[J]. Nature Communications, 2018,9(1):1-8. |
[28] | Li T T, Wang L J, Zhang K , et al. Freestanding boron nitride nanosheet films for ultrafast oil/water separation[J]. Small, 2016,12(36):4960-4965. |
[29] | Liu F, Yu J, Ji X X , et al. Nanosheet-structured boron nitride spheres with a versatile adsorption capacity for water cleaning[J]. ACS Applied Materials & Interfaces, 2015,7(3):1824-1832. |
[30] | Lei W W, Portehault D, Liu D , et al. Porous boron nitride nanosheets for effective water cleaning[J]. Nature Communications, 2013,4(2):1-7. |
[31] | Wang J M, Hao J, Liu D , et al. Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning[J]. Nanoscale, 2017,9(28):9787-9791. |
[32] | Chen M M, Wei D, Chu W , et al. One-pot synjournal of O-doped BN nanosheets as a capacitive deionization electrode for efficient removal of heavy metal ions from water[J]. Journal of Materials Chemistry A, 2017,5(32):17029-17039. |
[33] | Zeng H L, Dai J F, Yao W , et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 2012,7(8):490-493. |
[34] | An V, Anisimov E, Druzyanova V , et al. Study of tribological behavior of Cu-MoS2 and Ag-MoS2 nanocomposite lubricants[J]. SpringerPlus, 2016,5(1):1-5. |
[35] | Zheng J Y, Yan X X, Lu Z X , et al. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition[J]. Advanced Materials, 2017,29(13):1-6. |
[36] | Cha E, Patel M D, Park J , et al. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries[J]. Nature Nanotechnology, 2018,13(4):337-344. |
[37] | Gao X J, Wang X F, Ouyang X P , et al. Flexible superhydrophobic and superoleophilic MoS2 sponge for highly efficient oil-water separation[J]. Scientific Reports, 2016,6:1-8. |
[38] | Xing F, Li T, Li J Y , et al. Chemically exfoliated MoS2 for capacitive deionization of saline water[J]. Nano Energy, 2017,31:590-595. |
[39] | Wang Q W, Dong S Y, Zhang D , et al. Magnetically recyclable visible-light-responsive MoS2@Fe3O4 photocatalysts targeting efficient wastewater treatment[J]. Journal of Materials Science, 2018,53(2):1135-1147. |
[1] | ZHANG Ruijun, CHEN Guoliang, SONG Chuncao, ZHU Yafei. Effects of graphene oxide on mechanical properties and chloride penetration resistance of ultra⁃high performance concrete incorporating recycled sand [J]. Inorganic Chemicals Industry, 2024, 56(8): 54-59. |
[2] | LI Bo, LIAO Bihai. Preparation of functionalized graphene oxide and its application in portland cement [J]. Inorganic Chemicals Industry, 2023, 55(6): 57-62. |
[3] | ZHAO Liping, WANG Fei. Effect of amine-functionalized graphene oxide on mechanical properties of cement composites [J]. Inorganic Chemicals Industry, 2023, 55(3): 66-70. |
[4] | CUI Xiangmei, PAN Tongtong, LUO Qinglong, BIAN Fuxuan, YE Xiushen. Preparation of amino alcohol modified GO/CNTs composite aerogel and boron adsorption from salt lake brines [J]. Inorganic Chemicals Industry, 2023, 55(12): 59-65. |
[5] | DU Changqing, WANG Zhangxuan, TONG Teng, LIU Xiaofan, LIU Liang. Study on dispersion of silica fume/graphene oxide in hardened cement paste [J]. Inorganic Chemicals Industry, 2023, 55(11): 115-120. |
[6] | PEI Xiu,LI Yaming. Study on preparation of covalent organic framework materials and their adsorption properties for dyes [J]. Inorganic Chemicals Industry, 2023, 55(1): 106-111. |
[7] | JIA Zhiqi,NIE Huimin,ZHAO Yongxiang. Fe0/C induced copper salt reduction coupled with chemical precipitation method to remove thiocyanate from wastewater [J]. Inorganic Chemicals Industry, 2023, 55(1): 129-135. |
[8] | ZHANG Farong,FAN Tiantian,GUO Yanyun,LI Lu,LIU Bingguang,LI Jiansheng. Research progress on self-cleaning film materials [J]. Inorganic Chemicals Industry, 2022, 54(4): 74-80. |
[9] | MA Caifu,YUAN Chuanlai,ZHAO Xueqi. Effect of ball milling time on electrochemical properties of graphene composites [J]. Inorganic Chemicals Industry, 2022, 54(12): 68-73. |
[10] | Su Chi,Zhang Chenglei. Research progress of graphene and derived oil removal materials [J]. Inorganic Chemicals Industry, 2021, 53(7): 30-35. |
[11] | Liu Meili,Long Xiang,Tang Haiyan,Gao Banghui,Li Long,Shao Jiaojing. Construction,properties and applications of two-dimensional nanofluidic channels [J]. Inorganic Chemicals Industry, 2021, 53(6): 101-109. |
[12] | Shu Yirui,Zhang Pan,Wang Wei,Xiang Hengli,Ren Genkuan,Xu Dehua,Zhang Zhiye,Yang Xiushan. Titanium white by-product ferrous sulfate photofenton oxidation degradation of methyl orange in wastewater [J]. Inorganic Chemicals Industry, 2021, 53(3): 68-72. |
[13] | SUN Yaoyao,SONG Jiale,ZHENG Bin,LI Weiguang. Research progress of graphene anticorrosive coating [J]. Inorganic Chemicals Industry, 2021, 53(11): 30-35. |
[14] | Bai Lu,Wang Min,Yang Hongjun,Peng Zhengjun,Zhao Youjing,Li Zhilu. Research progress of graphene oxide modified polyamide membrane [J]. Inorganic Chemicals Industry, 2021, 53(10): 15-21. |
[15] | Guo Xin,Yi Hualei,Yuan Weiliang,Hao Yun,Duan Cuijia,Chen Zan. Study on preparation of GO-TSC/polyimide mixed matrix membrane and its gas separation performance [J]. Inorganic Chemicals Industry, 2021, 53(10): 74-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297