Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (7): 30-35.doi: 10.19964/j.issn.1006-4990.2021-0148
• Reviews and Special Topics • Previous Articles Next Articles
Received:
2021-03-15
Online:
2021-07-10
Published:
2021-07-13
Contact:
Zhang Chenglei
E-mail:suchi@cnooc.com.cn;18822198433@163.com
CLC Number:
Su Chi,Zhang Chenglei. Research progress of graphene and derived oil removal materials[J]. Inorganic Chemicals Industry, 2021, 53(7): 30-35.
[1] | Chen P, Yin D, Song P, et al. Demulsification and oil recovery from oil-in-water cutting fluid wastewater using electrochemical micromembrane technology[J]. Journal of Cleaner Production, 2020, 244(13):1-8. |
[2] | 李威, 任瑞鹏. 石墨烯基吸油材料的研究进展[J]. 现代化工, 2017, 37(8):19-22,24. |
[3] |
Tran V T, Xu X, Mredha M T I, et al. Hydrogel bowls for cleaning oil spills on water[J]. Water Research, 2018, 145:640-649.
doi: 10.1016/j.watres.2018.09.012 |
[4] |
Gupta R K, Dunderdale G J, England M W, et al. Oil/water separa-tion techniques:A review of recent progresses and future directio-ns[J]. Journal of Materials Chemistry A, 2017, 5(31):16025-16058.
doi: 10.1039/C7TA02070H |
[5] | 刘娟, 赵亚溥, 胡斌, 等. 油水乳状液的稳定机理及其化学破乳技术的研究进展[J]. 化工进展, 2013, 32(4):891-897. |
[6] | 杨玉洁, 陈雯雯, 张倩, 等. 聚结技术及其乳化油水分离性能[J]. 化工进展, 2019, 38(z1):10-18. |
[7] | Ni Long, Tian Jinyi, Song Tao, et al. Optimizing geometric parame-ters in hydrocyclones for enhanced separations:A review and persp-ective[J]. Separation & Purification Reviews, 2019, 48(1):30-51. |
[8] | Krebsz M, Pasinszki T, Tung T T, et al. Multiple applications of bio-graphene foam for efficient chromate ion removal and oil-water sep-aration[J]. Chemosphere, 2021, 263:1-12. |
[9] | Meng L, Sun Y, Gong H, et al. Research progress of the application of graphene-based materials in the treatment of water pollutants[J]. Carbon, 2019, 153:804-806. |
[10] |
Qin L, Liu W F, Liu X G, et al. A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism[J]. New Carbon Materials, 2020, 35(5):459-485.
doi: 10.1016/S1872-5805(20)60503-0 |
[11] |
Wang Y, Wang B, Wang J, et al. Superhydrophobic and superoleo-philic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation[J]. Journal of Hazardous Materials, 2018, 344:849-856.
doi: 10.1016/j.jhazmat.2017.11.040 |
[12] |
Zhou S, Zhou X, Hao G, et al. Property control of graphene aerogels by in situ growth of silicone polymer[J]. Applied Surface Science, 2018, 439:946-953.
doi: 10.1016/j.apsusc.2017.12.194 |
[13] | 刁帅, 刘会娥, 陈爽, 等. 软模板法石墨烯气凝胶的可控制备及其吸油性能[J]. 化工进展, 2020, 39(7):2742-2750. |
[14] |
Liu Y, Zhang Y, Liu Y, et al. Super heating/cooling rate enabled by microwave shock on polymeric graphene foam for high performa-nce lithium-sulfur batteries[J]. Carbon, 2021, 173:809-816.
doi: 10.1016/j.carbon.2020.11.061 |
[15] | Lu Z, Xu X, Chen Y, et al. Nitrogen and sulfur co-doped grapheme aerogel with hierarchically porous structure for high-performance supercapacitors[J]. Green Energy & Environment, 2020, 5(1):69-75. |
[16] |
Xu L, Xiao G, Chen C, et al. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction[J]. Journal of Materials Chemistry A, 2015, 3(14):7498-7504.
doi: 10.1039/C5TA00383K |
[17] | Maleki H. Recent advances in aerogels for environmental remedia-tion applications:A review[J]. The Chemical Engineering Journal, 2016, 300:98-118. |
[18] |
Wang S, Wang X, Shi X Y, et al. A three-dimensional polyoxomet-alate/graphene aerogel as a highly efficient and recyclable absor-bent for oil/water separation[J]. New Carbon Materials, 2021, 36(1):189-197.
doi: 10.1016/S1872-5805(21)60013-6 |
[19] | Chi C, Xu H, Zhang K, et al. 3D hierarchical porous graphene aero-gels for highly improved adsorption and recycled capacity[J]. Ma-terials Science and Engineering:B, 2015, 194:62-67. |
[20] |
Chen C, Li F, Zhang Y, et al. Compressive,ultralight and fire-resi-stant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents[J]. Chemical Engineering Journal, 2018, 350:173-180.
doi: 10.1016/j.cej.2018.05.189 |
[21] | Zhang S, Liu G, Gao Y, et al. A facile approach to ultralight and recyclable 3D self-assembled copolymer/graphene aerogels for ef-ficient oil/water separation[J]. Science of the Total Environment, 2019, 694:1-11. |
[22] |
Mi H, Jing X, Xie H, et al. Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation[J]. Chemical Engineering Journal, 2018, 337:541-551.
doi: 10.1016/j.cej.2017.12.135 |
[23] |
Chen B, Ma Q, Tan C, et al. Carbon-based sorbents with three-di-mensional architectures for water remediation[J]. Small, 2015, 11(27):3319-3336.
doi: 10.1002/smll.201403729 pmid: 25808922 |
[24] |
Kabiri S, Tran D N H, Altalhi T, et al. Outstanding adsorption per-formance of graphene-carbon nanotube aerogels for continuous oil removal[J]. Carbon, 2014, 80:523-533.
doi: 10.1016/j.carbon.2014.08.092 |
[25] |
Wan W, Zhang R, Li W, et al. Graphene-carbon nanotube aerogel as an ultra-light,compressible and recyclable highly efficient ab-sorbent for oil and dyes[J]. Environmental Science:Nano, 2016, 3(1):107-113.
doi: 10.1039/C5EN00125K |
[26] | 张凯, 闫小强, 唐自清, 等. 高吸油性三聚氰胺泡沫的制备与性能研究[J]. 河南理工大学学报:自然科学版, 2020, 39(4):155-160. |
[27] |
Lv X, Tian D, Peng Y, et al. Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil-waterseparation[J]. Applied Surface Science, 2019, 466:937-945.
doi: 10.1016/j.apsusc.2018.10.110 |
[28] |
Meng H, Yan T, Yu J, et al. Super-hydrophobic and super-lipophi-lic functionalized graphene oxide/polyurethane sponge applied for oil/water separation[J]. Chinese Journal of Chemical Engineering, 2018, 26(5):957-963.
doi: 10.1016/j.cjche.2017.09.004 |
[29] |
Xia C, Li Y, Fei T, et al. Facile one-pot synjournal of superhydropho-bic reduced graphene oxide-coated polyurethane sponge at the pre-sence of ethanol for oil-water separation[J]. Chemical Engineering Journal, 2018, 345:648-658.
doi: 10.1016/j.cej.2018.01.079 |
[30] | Zhou S, Hao G, Zhou X, et al. One-pot synjournal of robust superhy-drophobic,functionalized graphene/polyurethane sponge for effec-tive continuous oil-water separation[J]. Chemical Engineering Jo-urnal, 2016, 302:155-162. |
[31] | Zhang L, Li H, Lai X, et al. Thiolated graphene-based superhy-drophobic sponges for oil-water separation[J]. Chemical Engineer-ing Journal, 2017, 316:736-743. |
[32] | Cao Ning, Guo Jingyu, Boukherroub R, et al. Robust superhydropho-bic polyurethane sponge functionalized with perfluorinated grap-hene oxide for efficient immiscible oil/water mixture,stable emul-sion separation and crude oil dehydration[J]. Science China Tech-nological Sciences, 2019, 62(9):1585-1595. |
[33] | 李华. 复合泡沫结构吸油材料的合成及性能研究[D]. 大连:大连理工大学, 2014. |
[34] | Junaidi N F D, Othman N H, Fuzil N S, et al. Recent development of graphene oxide-based membranes for oil-water separation:A re-view[J]. Separation and Purification Technology, 2021, 258:1-16. |
[35] |
Asatekin A, Mayes A M. Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copoly-mers[J]. Environmental Science & Technology, 2009, 43(12):4487-4492.
doi: 10.1021/es803677k |
[36] |
Xue Z, Liu M, Jiang L. Recent developments in polymeric super-oleophobic surfaces[J]. Journal of Polymer Science Part B:Polymer Physics, 2012, 50(17):1209-1224.
doi: 10.1002/polb.23115 |
[37] |
袁静, 廖芳芳, 郭雅妮, 等. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1):144-155.
doi: 10.7536/PC180313 |
[38] |
Feng L, Zhang Z, Mai Z, et al. A super-hydrophobic and super-oleo-philic coating mesh film for the separation of oil and water[J]. Angewandte Chemie, 2004, 116(15):2046-2048.
doi: 10.1002/(ISSN)1521-3757 |
[39] | 栗雯绮, 陈文革, 崔晓娟, 等. 氧化石墨烯膜的制备、改性及应用研究进展[J]. 表面技术, 2021, 50(2):199-210. |
[40] | Zhang X, Zhang Z, Zeng Z, et al. Superoleophobic graphene oxide/halloysite nanotube composite membranes for oil-water separa-tion[J]. Materials Chemistry and Physics, 2021, 263.Doi: 10.1016/j.matchemphys.2021.124347. |
[41] | Kazemi F, Jafarzadeh Y, Masoumi S, et al. Oil-in-water emulsion separation by PVC membranes embedded with GO-ZnO nanopar-ticles[J]. Journal of Environmental Chemical Engineering, 2021, 9:1-11. |
[42] |
Peng Y, Yu Z, Li F, et al. A novel reduced graphene oxide-based composite membrane prepared via a facile deposition method for multifunctional applications:oil/water separation and cationic dyes removal[J]. Separation and Purification Technology, 2018, 200:130-140.
doi: 10.1016/j.seppur.2018.01.059 |
[43] | Abdalla O, Wahab M A, Abdala A. Mixed matrix membranes con-taining aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation[J]. Journal of Environmental Che-mical Engineering, 2020, 8:1-9. |
[44] |
An Di, Yang Ling, Wang Tingjie, et al. Separation performance of graphene oxide membrane in aqueous solution[J]. Industrial & Engineering Chemistry Research, 2016, 55(17):4803-4810.
doi: 10.1021/acs.iecr.6b00620 |
[45] | Yang S, Sha S, Lu H, et al. Graphene oxide and reduced grapheme oxide coated cotton fabrics with opposite wettability for continuous oil/water separation[J]. Separation and Purification Technology, 2021, 259:1-8. |
[46] | Dhumal P S, Khose R V, Wadekar P H, et al. Graphene-bentonite supported free-standing,flexible membrane with switchable wetta-bility for selective oil-water separation[J]. Separation and Purifica-tion Technology, 2021, 266:1-28. |
[47] |
Zinadini S, Vatanpour V, Zinatizadeh A A, et al. Preparation and characterization of antifouling graphene oxide/polyethersulfone ul-trafiltration membrane:Application in MBR for dairy wastewater treatment[J]. Journal of Water Process Engineering, 2015, 7:280-294.
doi: 10.1016/j.jwpe.2015.07.005 |
[48] | Abdel-Karim A, Leaper S, Alberto M, et al. High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications[J]. Chemical Engi-neering Journal, 2018, 334:789-799. |
[49] | 王彪, 刘庆旺, 范振忠, 等. 石墨烯衍生物在油水分离中的应用进展[J]. 东北石油大学学报, 2020, 44(4):66-71. |
[50] | Alammar A, Park S H, Williams C J, et al. Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment[J]. Journal of Membrane Science, 2020, 603:1-11. |
[1] | LIU Zihan, XI Guojun, LEI Guangping. Application of MOFs in adsorption refrigeration/heat pump [J]. Inorganic Chemicals Industry, 2023, 55(4): 20-26. |
[2] | CHEN Xinyi, ZHANG Hua, FANG Wei, XU Xiaofeng. Application of metal-organic frameworks in fields of natural gas purification and storage [J]. Inorganic Chemicals Industry, 2023, 55(4): 13-19. |
[3] | WU Luming, YU Haibin, WANG Yaquan. Study on preparation of porous carbon materials and oxygen reduction properties of their metal phosphide [J]. Inorganic Chemicals Industry, 2023, 55(4): 104-110. |
[4] | Liu Meili,Long Xiang,Tang Haiyan,Gao Banghui,Li Long,Shao Jiaojing. Construction,properties and applications of two-dimensional nanofluidic channels [J]. Inorganic Chemicals Industry, 2021, 53(6): 101-109. |
[5] | Xu Naicai,Shi Dandan. Preparation of manganese dioxide nanomaterials with different crystalline and their adsorption properties to methylene blue [J]. Inorganic Chemicals Industry, 2021, 53(3): 44-47. |
[6] | Quan Kaidong,Pan Fusheng,Chen Zan,Duan Cuijia,Yuan Biao,Yan Shuo. Research progress of improving gas separation performance of inorganic fillers for mixed matrix membranes [J]. Inorganic Chemicals Industry, 2021, 53(1): 1-6. |
[7] | LI Jing, YANG Xiao-Jun, XU Wang-Sheng. Preparation of perovskite-type nano-sized lead titanate [J]. INORGANICCHEMICALSINDUSTRY, 2011, 43(6): 40-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297