Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (10): 15-21.doi: 10.19964/j.issn.1006-4990.2020-0640
• Reviews and Special Topics • Previous Articles Next Articles
Bai Lu1,2,3(),Wang Min1,2,Yang Hongjun1,2(
),Peng Zhengjun1,2,Zhao Youjing1,2,Li Zhilu1,2
Received:
2020-11-25
Online:
2021-10-10
Published:
2021-10-11
Contact:
Yang Hongjun
E-mail:bailu191@mails.ucas.ac.cn;hjyang@isl.ac.cn
CLC Number:
Bai Lu,Wang Min,Yang Hongjun,Peng Zhengjun,Zhao Youjing,Li Zhilu. Research progress of graphene oxide modified polyamide membrane[J]. Inorganic Chemicals Industry, 2021, 53(10): 15-21.
[1] | 杜淼, 张馨. 二维纳米材料在水处理中的应用研究进展[J]. 无机盐工业, 2020, 52(1):17-21. |
[2] | Wang Y, Zhang Z, Li T, et al. Photothermal-responsive graphene oxide membrane with smart gates for water purification[J]. ACS Applied Materials & Interfaces, 2019, 11(47):44886-44893. |
[3] | 李燕, 赵有璟, 王敏. 纳滤技术在盐湖卤水镁锂分离领域的研究进展[J]. 无机盐工业, 2017, 49(12):9-12. |
[4] | 王祯宜. 薄膜复合纳滤膜结构设计及脱盐性能研究[D]. 合肥: 中国科学技术大学, 2020. |
[5] | 宋蕾, 伍灵, 解强, 等. 无机盐溶液纳滤膜技术的研究进展[J]. 无机盐工业, 2007, 39(4):5-7. |
[6] |
Platt S, Nyström M, Bottino A, et al. Stability of NF membranes un-der extreme acidic conditions[J]. Journal of Membrane Science, 2004, 239(1):91-103.
doi: 10.1016/j.memsci.2003.09.030 |
[7] | 张瑛洁, 戴继悟. 氧化石墨烯改性复合纳滤膜的研究进展[J]. 水处理技术, 2017, 43(9):1-5. |
[8] | 杨碧野, 姚之侃, 林赛赛, 等. 聚酰胺薄层复合膜性能劣化机理及表面改性策略[J]. 膜科学与技术, 2020, 40(3):161-167. |
[9] |
Xue S M, Ji C, Xu Z, et al. Chlorine resistant TFN nanofiltration mem-brane incorporated with octadecylamine-grafted GO and fluorine-containing monomer[J]. Journal of Membrane Science, 2018, 545:185-195.
doi: 10.1016/j.memsci.2017.09.075 |
[10] |
Jun B M, Kim S W, Kwak S K, et al. Effect of acidic aqueous solu-tion on chemical and physical properties of polyamide NF mem-branes[J]. Applied Surface Science, 2018, 444:387-398.
doi: 10.1016/j.apsusc.2018.03.078 |
[11] | Do V T, Tang C, Reinhaed M, et al. Degradation of polyamide nano-filtration and reverse osmosis membranes by hypochlorite[J]. En-vironmental Science & Technology, 2012, 46(2):852-859. |
[12] |
Navarro R, Gonzaleza M P, Saucedo I, et al. Effect of an acidic trea-tment on the chemical and charge properties of a nanofiltration mem-brane[J]. Journal of Membrane Science, 2008, 307(1):136-148.
doi: 10.1016/j.memsci.2007.09.015 |
[13] | Ma Q, Shuler P J, Aften C W, et al. Theoretical studies of hydroly-sis and stability of polyacrylamide polymers[J]. Polymer Degrada-tion Stability, 2015, 121:69-77. |
[14] |
Xu J, Wang Z, Wei X, et al. The chlorination process of crosslinked aromatic polyamide reverse osmosis membrane:New insights from the study of self-made membrane[J]. Desalination, 2013, 313:145-155.
doi: 10.1016/j.desal.2012.12.020 |
[15] |
Hashiba K, Nakai S, Ohno M, et al. Deterioration mechanism of a tertiary polyamide reverse osmosis membrane by hypochlorite[J]. Environmental Science & Technology, 2019, 53(15):9109-9117.
doi: 10.1021/acs.est.9b00663 |
[16] |
Liu S, Wu C, Hou X, et al. Understanding the chlorination mecha-nism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane[J]. Journal of Membrane Science, 2019, 573:36-45.
doi: 10.1016/j.memsci.2018.11.071 |
[17] |
Moghadam F, Park H B. 2D nanoporous materials:Membrane plat-form for gas and liquid separations[J]. 2D Materials, 2019, 6(4).Doi: 10.1088/2053-1583/ab1519.
doi: 10.1088/2053-1583/ab1519 |
[18] | 王朋辉, 李怡恩, 张亚涛. 氧化石墨烯尺寸调控及其复合膜分离性能研究[J]. 膜科学与技术, 2019, 39(3):62-69. |
[19] | Zhang N, Qi W, Huang L, et al. Review on structural control and modification of graphene oxide-based membranes in water treat-ment:From separation performance to robust operation[J]. Chi-nese Journal of Chemical Engineering, 2019, 27(6):1348-1360. |
[20] |
Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graph-ene oxide[J]. Chemical Society Reviews, 2010, 39(1):228-240.
doi: 10.1039/B917103G |
[21] | 翟倩楠, 冯树波. 氧化石墨烯的制备、结构控制与应用[J]. 化工进展, 2020, 39(10):4061-4072. |
[22] |
Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286.
doi: 10.1038/nature04969 |
[23] |
Dreyer D R, Todd A D, Bielawski C W. Harnessing the chemistry of graphene oxide[J]. Chemical Society Reviews, 2014, 43(15):5288-5301.
doi: 10.1039/C4CS00060A |
[24] |
Xie Q, Shao W, Zhang S, et al. Enhancing the performance of thin-film nanocomposite nanofiltration membranes using MAH-modi-fied GO nanosheets[J]. RSC Advances, 2017, 7(86):54898-54910.
doi: 10.1039/C7RA11550D |
[25] |
Paul M, Jons S D. Chemistry and fabrication of polymeric nanofil-tration membranes:A review[J]. Polymer, 2016, 103:417-456.
doi: 10.1016/j.polymer.2016.07.085 |
[26] |
Goh P S, Ismail F A. Chemically functionalized polyamide thin film composite membranes:The art of chemistry[J]. Desalination, 2020, 495.Doi: 10.1016/j.desal.2020.114655.
doi: 10.1016/j.desal.2020.114655 |
[27] |
Xie Q, Zhang S, Hong Z, et al. A novel double-modified strategy to enhance the performance of thin-film nanocomposite nanofiltration membranes:Incorporating functionalized graphenes into support-ing and selective layers[J]. Chemical Engineering Journal, 2019, 368:186-201.
doi: 10.1016/j.cej.2019.02.180 |
[28] |
Lai G S, Lau W J, Goh P S, et al. Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt re-moval performance[J]. Desalination, 2016, 387:14-24.
doi: 10.1016/j.desal.2016.03.007 |
[29] | Bala S, Nithya D, Doraisamy M. Exploring the effects of graphene oxide concentration on properties and antifouling performance ofPEES/GO ultrafiltration membranes[J]. High Performance Poly-mer, 2017, 30(3):375-383. |
[30] |
Ravishankar H, Christy J, Jegatheesan V. Graphene oxide (GO)-blended polysulfone(PSf) ultrafiltration membranes for lead ionrejection[J]. Membranes(Basel), 2018, 8(3).Doi: 10.3390/membranes8030077.
doi: 10.3390/membranes8030077 |
[31] | Koo C H, Lau W J, Lai G S, et al. Thin-film nanocomposite nanofiltra-tion membranes incorporated with graphene oxide for phosphorus removal[J]. Chemical Engineering & Technology, 2018, 41(2):319-326. |
[32] |
Xu P, Hong J, Qian X, et al. “Bridge” graphene oxide modified po-sitive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation[J]. Desalination, 2020, 488.Doi: 10.1016/j.desal.2020.114522.
doi: 10.1016/j.desal.2020.114522 |
[33] | Lai G S, Lau W J, Goh P S, et al. Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation[J]. Chemmical Engineering Journal, 2018, 344:524-534. |
[34] |
Li Y, Li C, Li S, et al. Graphene oxide(GO)-interlayered thin-film nanocomposite(TFN) membranes with high solvent resistance for organic solvent nanofiltration (OSN)[J]. Journal of Materials Chemistry A, 2019, 7:13315-13330.
doi: 10.1039/C9TA01915D |
[35] | Zhao X Y, Tong Z, Liu X, et al. Facile preparation of polyamide-graphene oxide composite membranes for upgrading pervaporation desalination performances of hypersaline solutions[J]. Industri-al & Engineering Chemistry Research, 2020, 59(26):12232-12238. |
[36] |
Bano S, Mahmood A, Kim S J, et al. Graphene oxide modified po-lyamide nanofiltration membrane with improved flux and antifoul-ing properties[J]. Journal of Materials Chemistry A, 2015, 3(5).Doi: 10.1039/C4TA03607G.
doi: 10.1039/C4TA03607G |
[37] | Chae H R, Lee J, Lee C H, et al. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux,anti-biofouling,and chlorine resistance[J]. Journal of Membrane Scien-ce, 2015, 483:128-135. |
[38] |
Wang J, Zhao C, Wang T, et al. Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification[J]. RSC Advances, 2016, 6(85):82174-82185.
doi: 10.1039/C6RA17284A |
[39] |
Nan Q, Li P, Cao B. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination[J]. Applied Surface Science, 2016, 387:521-528.
doi: 10.1016/j.apsusc.2016.06.150 |
[40] |
Hu R, He Y, Zhang C, et al. Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation[J]. Journal of Materials Chemistry A, 2017, 5(48):25632-25640.
doi: 10.1039/C7TA08635K |
[41] |
Perreault F, De F A F, Nejati S, et al. Antimicrobial properties of graphene oxide nanosheets:Why size matters[J]. ACS Nano, 2015, 9(7):7226-7236.
doi: 10.1021/acsnano.5b02067 pmid: 26091689 |
[42] |
Serpe G, Chaupart N, Verdu J. Ageing of polyamide 11 in acid so-lutions[J]. Polymer, 1997, 38:1911-1917.
doi: 10.1016/S0032-3861(96)00705-7 |
[43] | Choi W, Choi J, Bang J, et al. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Applied Materials & Interfaces, 2013, 5(23):12510-12519. |
[44] | Perreault F, Tousley M E, Elimelech M. Thin-film composite poly-amide membranes functionalized with biocidal graphene oxide na-nosheets[J]. Environmental Science & Technology Letters, 2014, 1(1):71-76. |
[45] |
Shao F, Dong L, Dong H, et al. Graphene oxide modified polyamid mide reverse osmosis membranes with enhanced chlorine resis-tance[J]. Journal of Membrane Science, 2017, 525:9-17.
doi: 10.1016/j.memsci.2016.12.001 |
[46] |
Luo J, Wan Y. Effects of pH and salt on nanofiltration-A critical review[J]. Journal of Membrane Science, 2013, 438:18-28.
doi: 10.1016/j.memsci.2013.03.029 |
[47] |
Sun P, Zheng F, Zhu M, et al. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide mem-branes based on cation π interactions[J]. ACS Nano, 2014, 8(1):850-859.
doi: 10.1021/nn4055682 |
[48] |
Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide mem-branes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676):415-418.
doi: 10.1038/nature24035 |
[49] |
Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067):442-444.
doi: 10.1126/science.1211694 pmid: 22282806 |
[1] | JIANG Minghui, ZHANG Liqing, PANG Meijing, LIU Chao. Research progress of ion channels for achieving monovalent cation sieving [J]. Inorganic Chemicals Industry, 2025, 57(3): 9-17. |
[2] | TAN Shanyi, WEN Huizi, HE Shuyu, ZHANG Liwen, CHEN Shaohua, XI Benjun. Study on leaching behavior and kinetics of phosphorus from phosphogypsum [J]. Inorganic Chemicals Industry, 2025, 57(2): 105-112. |
[3] | GUO Yingjun, WU Songsong, DING Chunyan, ZHAO Shikai, SONG Tao, WEN Guangwu. Preparation of SSZ-13 zeolite membrane from glass-ceramics-strontium feldspar by crystal transformation method [J]. Inorganic Chemicals Industry, 2025, 57(2): 76-82. |
[4] | ZHANG Li, LOU Yufeng, ZHANG Wei, LIU Fangwang, LAN Jing, ZHAO Zongshan, FU Kunming. Research of regeneration of thioglycolic acid by bipolar membrane electrodialysis using sodium thioglycolate wastewater as resource [J]. Inorganic Chemicals Industry, 2025, 57(2): 120-129. |
[5] | ZHANG Ruijun, CHEN Guoliang, SONG Chuncao, ZHU Yafei. Effects of graphene oxide on mechanical properties and chloride penetration resistance of ultra⁃high performance concrete incorporating recycled sand [J]. Inorganic Chemicals Industry, 2024, 56(8): 54-59. |
[6] | FAN Le, LI Hao, LIU Guochang, XU Shoujiang, WANG Haitao, LI Guocai, CHANG Na. Preparation of acid-base by bipolar membrane electrodialysis using NaNO3 as resource [J]. Inorganic Chemicals Industry, 2024, 56(7): 104-111. |
[7] | XUE Jin, TIAN Mengkui, LIU Hai. Study on membrane fouling in ceramic filtration of phosphorus concentrate based on xDLVO theory [J]. Inorganic Chemicals Industry, 2024, 56(6): 55-60. |
[8] | HUANG Zhaojie, ZHAO Xiaoxu, WANG Haitao, CHANG Na, ZHANG Guoxin, XIE Yonglei, YIN Yanmei, LU Na, WANG Wei. Study on ultrafiltration+nanofiltration double membrane treatment of iron process iron phosphate production wastewater [J]. Inorganic Chemicals Industry, 2024, 56(11): 145-150. |
[9] | LI Yang, ZANG Yihua, YUAN Biao, SHENG Chunguang. Modification of antifouling ceramic membrane and its application of oily wastewater treatment [J]. Inorganic Chemicals Industry, 2023, 55(9): 33-42. |
[10] | FU Yu, DENG Mi, HUANG Donggen, WAN Jinbao. Research progress of lithium extraction technology from salt lake brine [J]. Inorganic Chemicals Industry, 2023, 55(9): 9-16. |
[11] | YANG Bo, LIANG Zhiyan, LIU Wenyuan, CAO Jiazhen, LIU Xinyue, XING Mingyang. Research progress of application of molybdenum-based catalytic materials for water pollution control [J]. Inorganic Chemicals Industry, 2023, 55(8): 1-12. |
[12] | LI Bo, LIAO Bihai. Preparation of functionalized graphene oxide and its application in portland cement [J]. Inorganic Chemicals Industry, 2023, 55(6): 57-62. |
[13] | ZHAO Liping, WANG Fei. Effect of amine-functionalized graphene oxide on mechanical properties of cement composites [J]. Inorganic Chemicals Industry, 2023, 55(3): 66-70. |
[14] | TIAN Zhuangzhuang, CHEN Jianjun, JIN Yang, CHEN Ming, LI Jun, LIU Daijun. Experimental study on removing metal ions from phosphoric acid by nanofiltration membrane [J]. Inorganic Chemicals Industry, 2023, 55(12): 133-139. |
[15] | CUI Xiangmei, PAN Tongtong, LUO Qinglong, BIAN Fuxuan, YE Xiushen. Preparation of amino alcohol modified GO/CNTs composite aerogel and boron adsorption from salt lake brines [J]. Inorganic Chemicals Industry, 2023, 55(12): 59-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297