[1] |
田崔钧, 田君, 陈芬, 等. 锂离子电池安全性测试分析[J]. 重庆理工大学学报:自然科学, 2018, 32(10):34-39.
|
[2] |
BECK F, RÜETSCHI P. Rechargeable batteries with aqueous elec-trolytes[J]. Electrochimica Acta, 2000, 45(15):2467-2482.
|
[3] |
HUANG Jianhang, GUO Zhaowei, MA Yuanyuan, et al. Recent pro-gress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019, 3(1).Doi: 10.1002/smtd.201800272.
|
[4] |
肖民, 魏超, 姚寿广, 等. 单斜镍锰酸锂在不同离子电解液中的性能研究[J]. 无机盐工业, 2018, 50(7):23-26.
|
[5] |
马慧, 张桓荣, 薛面起. 水系钠离子电池的研究进展及实用化挑战[J]. 化学学报, 2021, 79(4):388-405.
|
[6] |
陈丽能, 晏梦雨, 梅志文, 等. 水系锌离子电池的研究进展[J]. 无机材料学报, 2017, 32(3):225-234.
|
[7] |
XU Chengjun, LI Baohua, DU Hongda, et al. Energetic zinc ion che-mistry:The rechargeable zinc ion battery[J]. Angewandte Chemie, 2012, 124(4):957-959.
|
[8] |
LI Changgang, ZHANG Xudong, HE Wen, et al. Cathode materials for rechargeable zinc-ion batteries:From synjournal to mechanism and applications[J]. Journal of Power Sources, 2020, 449.Doi: 10.1016/j.jpowsour.2019.227596.
|
[9] |
杨艳芹, 周谭, 李晓辉, 等. 锌离子电池的发展现状及展望[J]. 西部皮革, 2019, 41(23):94.
|
[10] |
FANG Guozhao, ZHOU Jiang, PAN Anqiang, et al. Recent advanc-es in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10):2480-2501.
|
[11] |
SELVAKUMARAN D, PAN Anqiang, LIANG Shuquan, et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(31):18209-18236.
|
[12] |
戴宇航, 甘志伟, 阮雨杉, 等. 水系锌离子电池及关键材料研究进展[J]. 硅酸盐学报, 2021, 49(7):1323-1336.
|
[13] |
SONG Ming, TAN Hua, CHAO Dongliang, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41).Doi: 10.1002/adfm.201802564.
|
[14] |
MING Jun, GUO Jing, XIA Chuan, et al. Zinc-ion batteries:Mate-rials,mechanisms,and applications[J]. Materials Science and En-gineering:R:Reports, 2019, 135:58-84.
|
[15] |
ALFARUQI M H, ISLAM S, PUTRO D Y, et al. Structural transfor-mation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery[J]. Electrochimica Acta, 2018, 276:1-11.
|
[16] |
KONAROV A, VORONINA N, JO Jae Hyeon, et al. Present and future perspective on electrode materials for rechargeable zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10):2620-2640.
|
[17] |
XU Dongwei, LI Baohua, WEI Chunguang, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for en-ergy storage with zinc ions[J]. Electrochimica Acta, 2014, 133:254-261.
|
[18] |
WU Buke, ZHANG Guobin, YAN Mengyu, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery[J]. Small, 2018, 14(13).Doi: 10.1002/smll.201703850.
|
[19] |
PAN Huilin, SHAO Yuyan, YAN Pengfei, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1.Doi: 10.1038/nenergy.2016.39.
|
[20] |
SUN Kyung E K, HOANG Tuan K A, DOAN T N L, et al. Suppres-sion of dendrite formation and corrosion on zinc anode of secon-dary aqueous batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(11):9681-9687.
|
[21] |
STOCK D, DONGMO S, WALTHER F, et al. Homogeneous coating with an anion-exchange ionomer improves the cycling stability of secondary batteries with zinc anodes[J]. ACS Applied Materials & Interfaces, 2018, 10(10):8640-8648.
|
[22] |
GUDURU R, ICAZA J. A brief review on multivalent intercalation batteries with aqueous electrolytes[J]. Nanomaterials, 2016, 6(3).Doi: 10.3390/nano6030041.
|
[23] |
HU Lintong, XIAO Ping, XUE Lanlan, et al. The rising zinc anodes for high-energy aqueous batteries[J]. EnergyChem, 2021, 3(2). Doi: 10.1016/j.enchem.2021.100052.
|
[24] |
常立民, 林丽, 聂平. 水系锌离子电池:金属锌负极研究进展[J]. 吉林师范大学学报:自然科学版, 2021, 42(3):8-15.
|
[25] |
KANG Litao, CUI Mangwei, JIANG Fuyi, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J]. Advanced Energy Materials, 2018, 8(25).Doi: 10.1002/aenm.201801090.
|
[26] |
HONG Lin, WU Xiuming, MA Chao, et al. Boosting the Zn-ion tra-nsfer kinetics to stabilize the Zn metal interface for high-perfor-mance rechargeable Zn-ion batteries[J]. Journal of Materials Che-mistry A, 2021, 9(31):16814-16823.
|
[27] |
XIA Aolin, PU Xiaoming, TAO Yayuan, et al. Graphene oxide spon-taneous reduction and self-assembly on the zinc metal surface en-abling a dendrite-free anode for long-life zinc rechargeable aqueous batteries[J]. Applied Surface Science, 2019, 481:852-859.
|
[28] |
QIN Runzhi, WANG Yuetao, ZHANG Mingzheng, et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries[J]. Nano Energy, 2021, 80.Doi: 10.1016/j.nanoen.2020.105478.
|
[29] |
PARKER J F, CHERVIN C N, PALA I R, et al. Rechargeable nic-kel-3D zinc batteries:An energy-dense,safer alternative to lithi-um-ion[J]. Science, 2017, 356(6336):415-418.
|
[30] |
TAO Haisheng, TONG Xiang, GAN Lu, et al. Effect of adding vari-ous carbon additives to porous zinc anode in rechargeable hybrid aqueous battery[J]. Journal of Alloys and Compounds, 2016, 658:119-124.
|
[31] |
MAINAR A R, COLMENARES L C, BLÁZQUEZ J A, et al. A brief overview of secondary zinc anode development:The key of improv-ing zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3):903-918.
|
[32] |
ZHANG Ning, CHENG Fangyi, LIU Junxiang, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8.Doi: 10.1038/s41467-017-00467-x.
|
[33] |
WANG Fei, BORODIN Oleg, GAO Tao, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17(6):543-549.
|
[34] |
GUO Shan, QIN Liping, ZHANG Tengsheng, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion bat-teries[J]. Energy Storage Materials, 2021, 34:545-562.
|
[35] |
CUI Jin, LIU Xiaoyu, XIE Yihua, et al. Improved electrochemical reversibility of Zn plating/stripping:A promising approach to sup-press water-induced issues through the formation of H-bonding[J]. Materials Today Energy, 2020, 18.Doi: 10.1016/j.mtener.2020.100563.
|
[36] |
NIAN Qingshun, WANG Jiayue, LIU Shuang, et al. Aqueous batte-ries operated at -50 ℃[J]. Angewandte Chemie International Edi-tion, 2019, 58(47):16994-16999.
|
[37] |
LI Hongfei, HAN Cuiping, HUANG Yan, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science, 2018, 11(4):941-951.
|
[38] |
GUO Xun, ZHOU Jiang, BAI Chaolei, et al. Zn/MnO2 battery che-mistry with dissolution-deposition mechanism[J]. Materials Today Energy, 2020, 16.Doi: 10.1016/j.mtener.2020.100396.
|