无机盐工业 ›› 2022, Vol. 54 ›› Issue (4): 61-68.doi: 10.19964/j.issn.1006-4990.2021-0615
收稿日期:
2021-10-18
出版日期:
2022-04-10
发布日期:
2022-04-18
作者简介:
梁芳(1983— ),女,博士研究生,高工,主要研究方向为金属配位聚合物材料设计与结构优化;E-mail: Received:
2021-10-18
Published:
2022-04-10
Online:
2022-04-18
摘要:
铋基双金属光催化剂包括铋基双金属氧化物、铋基双金属配合物及铋酸盐。综述了铋基双金属光催化剂分类、制备方法及其在光催化降解水中有机污染物的研究进展。系统介绍了铋基双金属材料制备方法,包括水热法、溶剂热法、化学溶液分解法、熔盐法、沉淀法、高温固相法等。同时重点阐述了铋基双金属光催化剂掺杂和复合改性,并对铋基双金属光催化剂的研究方向进行了展望,目的是为开发高性能的铋基双金属光催化剂提供实用指南。
中图分类号:
梁芳,史发年. 铋基双金属光催化剂合成及降解有机污染物研究进展[J]. 无机盐工业, 2022, 54(4): 61-68.
LIANG Fang,SHI Fanian. Research progress on synthesis of bismuth based bimetallic photocatalyst and degradation of organic pollutants[J]. Inorganic Chemicals Industry, 2022, 54(4): 61-68.
表1
铋基双金属光催化剂制备方法和降解不同种类污染物光催化效率
催化剂 | 制备方法 | 禁带宽度/eV | 污染物及浓度 | 光催化效率 |
---|---|---|---|---|
CuBi-MOO/Gr[ | 水热法 | 2.67 | 5 mg/L罗丹明B | 10 min降解完全 |
BiCo-MCP[ | 水热法 | 1.65 | 10 mg/L吡虫啉农药 | 5 h降解81% |
BiVO4[ | 水热法 | 2.34 | 10 mg/L亚甲基蓝 | 2 h降解95% |
BiVO4[ | 水热法 | 2.30 | 5×10-5 mol/L罗丹明B | 45 min降解90% |
β-BiMo2O9[ | 固相法 | 3.10 | 5 mg/L罗丹明B | 403 min降解50% |
30 mg/L靛蓝胭脂红 | 295 min降解50% | |||
15 mg/L茜素红 | 282 min降解50% | |||
10 mg/L罗丹明B | 90 min降解完全 | |||
10 mg/L双酚A | 150 min降解完全 | |||
AgBiO3[ | 水热法 | 0.75 | 20 mg/L 4-硝基苯酚 | 5 h降解90% |
Bi2WO6[ | 水热法 | 2.95 | 5 μg/L罗丹明B | 50 min降解98% |
Bi12TiO20[ | 溶剂热法 | — | 25 mg/L酸性品红 | 3 h降解92% |
Bi2Ti2O7[ | 化学溶液分解法 | 2.95 | 10 mg/L甲基橙 | 7.5 min脱色50% |
Bi4Ti3O12[ | 化学溶液分解法 | 3.08 | 10 mg/L甲基橙 | 2.6 h脱色50% |
Bi4Ti3O12[ | 熔盐法 | — | 20 mg/L亚甲基蓝 | 2 h降解完全 |
Bi4Ti3O12[ | 氧化剂过氧化物法 | 2.63 | 10 mg/L罗丹明B | 3 h降解98% |
Bi12TiO20[ | 2.66 |
[1] | 刘莹. 铁酸镁光催化剂合成与多种染料降解活性对比研究[J]. 无机盐工业, 2020, 52(11):103-107. |
[2] | 黄夏梦. 光催化材料Bi4O7/BiOBr的制备及其光催化性能研究[J]. 无机盐工业, 2021, 53(4):112-116. |
[3] | KALLAWAR G A, BARAI D P, BHANVASE B A. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater:A comprehensive review on synjournal methods,performance as photocatalyst and challenges[J]. Journal of Cleaner Production, 2021, 318.Doi: 10.1016/j.jclepro.2021.128563. |
[4] | MENG Xiangchao, ZHANG Zisheng. Facile synjournal of BiOBr/Bi2WO6 heterojunction semiconductors with high visible-light-driven photocatalytic activity[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2015, 310:33-44. |
[5] | GAO Xiaoming, GAO Kailong, FU Feng, et al. Synergistic introducing of oxygen vacancies and hybrid of organic semiconductor:Realizing deep structure modulation on Bi5O7I for high-efficiency photocatalytic pollutant oxidation[J]. Applied Catalysis B:Environmental, 2020, 265.Doi: 10.1016/j.apcatb.2019.118562. |
[6] | TAHIR M B, RAFIQUE M, RAFIQUE M S, et al. Photocatalytic nanomaterials for degradation of organic pollutants and heavy metals[M]// Nanotechnology and Photocatalysis for Environmental Applications.Amsterdam:Elsevier, 2020:119-138. |
[7] | BAI Song, ZHANG Ning, GAO Chao, et al. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018, 53:296-336. |
[8] | SUN Pingping, ZHANG Yuhang, PAN Guangxin, et al. Application of NiO-modified NiCo2O4 hollow spheres for high performance lithium ion batteries and supercapacitors[J]. Journal of Alloys and Compounds, 2020, 832.Doi: 10.1016/j.jallcom.2020.154954. |
[9] | KANG Ying, ZHANG Yuhang, SUN Pingping, et al. Bimetallic coordination polymer composites:A new choice of electrode materials for lithium ion batteries[J]. Solid State Ionics, 2020, 350.Doi: 10.1016/j.ssi.2020.115310. |
[10] | SHI Fanian, BAI Yiwen, LU Miao, et al. A one-dimensional Mn(Ⅱ)-based metal organic oxide:Structure and properties[J]. Transition Metal Chemistry, 2017, 42(7):605-614. |
[11] | SHI Fanian, LU Miao, BAI Yiwen, et al. pH controlled excellent photocatalytic activity of a composite designed from CuBi-based metal organic oxide and graphene[J]. Crystal Growth & Design, 2018, 18(9):5045-5053. |
[12] | LIANG Fang, LU Miao, ZHANG Yuhang, et al. Synjournal and structure of a bismuth-cobalt bimetal coordination polymer for green efficient photocatalytic degradation of organic wastes under visible light[J]. Journal of Molecular Structure, 2021, 1230.Doi: 10.1016/j.molstruc.2020.129636. |
[13] | YUE Zilong, FENG Yuquan, NG S W. A linear heterometallic bismuth-copper coordination polymer containing two types of organic ligands[J]. Acta Crystallographica Section C:Structural Chemistry, 2015, 71:100-102. |
[14] | PEARSON T J, FATAFTAH M S, FREEDMAN D E. Enhancement of magnetic anisotropy in a Mn-Bi heterobimetallic complex[J]. Chemical Communications(Cambridge,England), 2016, 52(76):11394-11397. |
[15] | SHI Fanian, SILVA A R, YANG Tinghai, et al. Mixed Cu(ii)-Bi(iii) metal organic framework with a 2D inorganic subnetwork and its catalytic activity[J]. CrystEngComm, 2013, 15(19):3776-3779. |
[16] | SHI Fanian, ROSA SILVA A, BIAN Liang. Bi-Mn mixed metal organic oxide:A novel 3d-6p mixed metal coordination network[J]. Journal of Solid State Chemistry, 2015, 225:45-52. |
[17] | 崔玉民, 李慧泉. 铋基光催化材料[M]. 北京: 化学工业出版社, 2015. |
[18] | LU Dingze, YANG Minchen, KUMAR K K, et al. Grape-like Bi2WO6 / CeO2 hierarchical microspheres:A superior visible-light-driven photoelectric efficiency with magnetic recycled characteristic[J]. Separation and Purification Technology, 2018, 194:130-134. |
[19] | YANG Qing, LUO Maolan, LIU Kewei, et al. A composite of singlecrystalline Bi2WO6 and polycrystalline BiOCl with a high percentage of exposed(00l) facets for highly efficient photocatalytic degradation of organic pollutants[J]. Chemical Communications(Cambridge,England), 2019, 55(40):5728-5731. |
[20] | DUAN Jihai, LIU Miyu, SONG Xiaokun, et al. Enhanced photocatalytic degradation of organic pollutants using carbon nanotube mediated CuO and Bi2WO6 sandwich flaky structures[J]. Nanotechnology, 2020, 31(42).Doi: 10.1088/1361-6528/ab9bd3. |
[21] | ZHAO Yu, XIE Yi, ZHU Xi, et al. Surfactant-free synjournal of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis,gas sensing,and lithium-ion batteries[J]. Chemistry-A European Journal, 2008, 14(5):1601-1606. |
[22] | ZHANG Lili, LONG Jinxin, PAN Wenwen, et al. Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synjournal[J]. Materials Chemistry and Physics, 2012, 136(2/3):897-902. |
[23] | JAYARAMAN V, AYAPPAN C, MANI A. Facile preparation of bismuth vanadate-sheet/carbon nitride rod-like interface photocatalyst for efficient degradation of model organic pollutant under direct sunlight irradiation[J]. Chemosphere, 2022, 287.Doi: 10.1016/j.chemosphere.2021.132055. |
[24] | SHIMODAIRA Y, KATO H, KOBAYASHI H, et al. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J]. The Journal of Physical Chemistry B, 2006, 110(36):17790-17797. |
[25] | MARTÍNEZ-DE LA CRUZ A, GRACIA LOZANO L G. Photoas sisted degradation of organic dyes by β-Bi2Mo2O9[J]. Reaction Kinetics,Mechanisms and Catalysis, 2010, 99(1):209-215. |
[26] | ZHANG Xing, CHEN Suhang, LIAN Xiaoyan, et al. Efficient activation of peroxydisulfate by g-C3N4/Bi2MoO6 nanocomposite for enhanced organic pollutants degradation through non-radical dominated oxidation processes[J]. Journal of Colloid and Interface Science, 2022, 607:684-697. |
[27] | ZHOU Wenliu, ZHAO Zongyan. Electronic structures of efficient MBiO3(M=Li,Na,K,Ag) photocatalyst[J]. Chinese Physics B, 2016, 25(3):325-332. |
[28] | LI Linna, LIU Zhangsheng, GUO Litong, et al. NaBiO3/BiO2-x composite photocatalysts with post-illumination “memory” activity[J]. Materials Letters, 2019, 234:30-34. |
[29] | BORUAH B, GUPTA R, MODAK J M, et al. Novel insights into the properties of AgBiO3 photocatalyst and its application in immobilized state for 4-nitrophenol degradation and bacteria inactivation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 373:105-115. |
[30] | RAMACHANDRAN R, SATHIYA M, RAMESHA K, et al. Photocatalytic properties of KBiO3 and LiBiO3 with tunnel structures[J]. Journal of Chemical Sciences, 2011, 123(4):517-524. |
[31] | GUO Xiaoxia, WU Dan, LONG Xia, et al. Nanosheets-assembled Bi2WO6 microspheres with efficient visible-light-driven photocatalytic activities[J]. Materials Characterization, 2020, 163.Doi: 10.1016/j.matchar.2020.110297. |
[32] | TAN Ye, YIN Changjiu, ZHENG Shuilin, et al. Design and controllable preparation of Bi2MoO6/attapulgite photocatalyst for the removal of tetracycline and formaldehyde[J]. Applied Clay Science, 2021, 215.Doi: 10.1016/j.clay.2021.106319. |
[33] | MA Yongchao, ZHANG Yuanyuan, WANG Lili, et al. Single solvent-induced one-step solvothermal method:A general strategy for controllable synjournal of ternary and multiplex Bi-based composites[J]. Journal of Alloys and Compounds, 2019, 784:405-413. |
[34] | LIU H, SHON H K, OKOUR Y H, et al. Photocatalytic degradation of acid red G by bismuth titanate in three-phase fluidized bed photoreactor[J]. Journal of Advanced Oxidation Technologies, 2011, 14(1):115-121. |
[35] | ZHU Gangqiang, LIANG Jia, HOJAMBERDIEV M, et al. Ethylenediamine(EDA) -assisted hydrothermal synjournal of nitrogen-doped Bi2WO6 powders[J]. Materials Letters, 2014, 122:216-219. |
[36] | AGUSTINA E B, SURYANA R, IRIANI Y. Dependence of microstructure and optical properties on holding time and annealing temperature of BiFeO3 thin film fabricated by chemical solution deposition(CSD)[J]. Materials Today:Proceedings, 2021, 44:3313-3318. |
[37] | YAO Weifeng, XU Xiaohong, WANG Hong, et al. Photocatalytic property of perovskite bismuth titanate[J]. Applied Catalysis B: Environmental, 2004, 52(2):109-116. |
[38] | YAO Weifeng, WANG Hong, XU Xiaohong, et al. Photocatalytic property of bismuth titanate Bi2Ti2O7[J]. Applied Catalysis A:General, 2004, 259(1):29-33. |
[39] | SHAO Luhua, YANG Zhenfei, LI Sijian, et al. Molten-salt growth of Bi5FeTi3O15-based composite to dramatically boost photocatalytic performance[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2021, 415.Doi: 10.1016/j.jphotochem.2021.113306. |
[40] | ZHAO Wei, JIA Zhen, LEI E, et al. Photocatalytic degradation efficacy of Bi4Ti3O12 micro-scale platelets over methylene blue under visible light[J]. Journal of Physics and Chemistry of Solids, 2013, 74(11):1604-1607. |
[41] | NOH T H, HWANG S W, KIM J U, et al. Optical properties and visible light-induced photocatalytic activity of bismuth sillenites (Bi12XO20,X=Si,Ge,Ti)[J]. Ceramics International, 2017, 43(15):12102-12108. |
[42] | NOGUEIRA A E, LONGO E, LEITE E R, et al. Synjournal and photocatalytic properties of bismuth titanate with different structures via oxidant peroxo method(OPM)[J]. Journal of Colloid and Interface Science, 2014, 415:89-94. |
[43] | GUO Pengyao, HU Xiaomin, WANG Min. Solution combusting synjournal of xFe-Bi2MoO6 nanoparticles with increased photocatalytic performance for organic pollutants degradation[J]. Optik, 2020, 222.Doi: 10.1016/j.ijleo.2020.165399. |
[44] | JAYARAMAN V, AYAPPAN C, VATTIKONDALA G, et al. Preparation and characterization of the Cu,Fe co-doped Bi2Ti2O7/EGg-C3N4 material for organic model pollutants removal under direct sun light irradiation[J]. Materials Research Bulletin, 2021, 143.Doi: 10.1016/j.materresbull.2021.111439. |
[45] | YANG Zhengxin, WANG Ruiqi, XU Longjun, et al. Highly efficient flower-like Dy3+-doped Bi2MoO6 photocatalyst under simulated sunlight:Design,fabrication and characterization[J]. Optical Materials, 2021, 116.Doi: 10.1016/j.optmat.2021.111094. |
[46] | HUA Chenghe, WANG Jiawei, DONG Xiaoli, et al. In situ plasmonic Bi grown on I- doped Bi2WO6 for enhanced visible-light-driven photocatalysis to mineralize diverse refractory organic pollutants[J]. Separation and Purification Technology, 2020, 250.Doi: 10.1016/j.seppur.2020.117119. |
[47] | HABIBI-YANGJEH A, PIRHASHEMI M, GHOSH S. ZnO/ZnBi2O4 nanocomposites with p-n heterojunction as durable visible-lightactivated photocatalysts for efficient removal of organic pollutants[J]. Journal of Alloys and Compounds, 2020, 826.Doi: 10.1016/j.jallcom.2020.154229. |
[48] | SELVARAJAN S, SUGANTHI A, RAJARAJAN M, et al. Fabrication of highly efficient mesoporous NaBiO3/ZnO nanocomposites for recyclable photocatalytic degradation of organic pollutants[J]. Optik-International Journal for Light and Electron Optics, 2018, 153:16-30. |
[49] | WANG Yan, JUNG D. Synjournal of novel BiOCl/LiBiO3 p-n heterojunction photocatalysts and their enhanced photocatalytic performance[J]. Solid State Sciences, 2019, 91:42-48. |
[50] | ZHOU Bin, ZHAO Xu, LIU Huijuan, et al. Synjournal of visible-light sensitive M-BiVO4 (M=Ag,Co,and Ni) for the photocatalytic degradation of organic pollutants[J]. Separation and Purification Technology, 2011, 77(3):275-282. |
[1] | 史王芳, 张永胜. 混凝土基非金属硼掺杂富氮氮化碳降解NO x 性能研究[J]. 无机盐工业, 2025, 57(3): 116-123. |
[2] | 李子罕, 张佳琦, 李世卓, 李欣雨, 刘少卓, 王一豪, 郝玉翠, 刘剑, 李彦华. CdS/g-C3N4复合光催化剂的合成及催化机理研究[J]. 无机盐工业, 2025, 57(3): 124-132. |
[3] | 杨福, 解玉龙. 三元材料LiNi0.65Co0.15Mn0.2O2的制备及Na+掺杂改性研究[J]. 无机盐工业, 2025, 57(3): 43-49. |
[4] | 张珠峰, 任银拴. 稀磁半导体Cr掺杂CdS纳米结构及磁性能研究[J]. 无机盐工业, 2025, 57(3): 50-57. |
[5] | 张豹, 权凯栋, 王永锋, 韩非, 史爱文, 刘欣, 王晓敏. 纳米花状Fe y -NiCoS x @NF催化材料制备及电解海水制氢析氧的研究[J]. 无机盐工业, 2025, 57(2): 130-137. |
[6] | 孙庆昊, 李克艳, 郭新闻. Pd/ZnIn2S4纳米片光催化苯甲醇氧化耦合产氢的研究[J]. 无机盐工业, 2025, 57(1): 113-119. |
[7] | 刘光明. C3N5/NH2-MIL-125(Ti)改性混凝土砂浆光催化和力学性能研究[J]. 无机盐工业, 2025, 57(1): 120-128. |
[8] | 张飞刚, 刘中利. CuO/g-C3N4复合材料在有机染料降解和超级电容器中的应用研究[J]. 无机盐工业, 2025, 57(1): 129-136. |
[9] | 王萍, 徐荣声, 孙冬, 史小红, 徐炜, 李梅. 氮掺杂生物炭的制备及其对亚甲基蓝的吸附性能研究[J]. 无机盐工业, 2024, 56(9): 117-127. |
[10] | 石萌轲, 范赵亚, 岳峰, 张硕, 孟阳, 张宏忠. 空气中CO2电辅助式光催化高选择性转化的研究[J]. 无机盐工业, 2024, 56(9): 154-163. |
[11] | 孙延龙, 袁广胜, 王红军. 基于钯修饰的介孔TiO2纳米棒高效光降解四环素的研究[J]. 无机盐工业, 2024, 56(9): 147-153. |
[12] | 张国强, 戎西林, 肖振芳, 薛自然, 程昊, 冯军, 刘泉, 陆瑶, 黄文艺. 甘蔗渣碳气凝胶负载纳米氧化锌的制备及其光催化性能研究[J]. 无机盐工业, 2024, 56(8): 131-138. |
[13] | 熊彩莲, 孙国斌, 李恒, 邢峰. 掺杂Ba(Zr0.15Ti0.85)O3陶瓷的结构与电性能研究[J]. 无机盐工业, 2024, 56(8): 60-66. |
[14] | 薛山, 刘璐, 戴建升, 李晴, 冯泽, 李意能. 铕掺杂改善锂离子电池正极材料LiFePO4电化学性能研究[J]. 无机盐工业, 2024, 56(8): 67-73. |
[15] | 王雅雯, 王芳芳, 耿司宇, 鞠佳, 陈雷, 陈常东. SrTiO3-SrWO4的制备及其光催化性能研究[J]. 无机盐工业, 2024, 56(7): 143-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|