[1] |
SHU Y, XU Y, HUANG H, et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation[J]. Chemo-sphere, 2018, 208:550-558.
|
[2] |
LI M, LU B, KE Q, et al. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal[J]. Journal of Hazardous Materials, 2017, 333:88-98.
|
[3] |
LI Y, LI T, SONG X, et al. Enhanced adsorption-photocatalytic re-duction removal for Cr(Ⅵ) based on functionalized TiO2 with hydro-philic monomers by pre-radiation induced grafting-ring opening method[J]. Applied Surface Science, 2020, 514.Doi: 10.1016/j.apsusc.2020.145789.
|
[4] |
王春平. Ce/N共掺杂TiO2/精制硅藻土光催化材料的制备及降解应用研究[D]. 沈阳:辽宁大学, 2020.
|
[5] |
XU W Q, JIN Y, REN Y S, et al. Synergy mechanism for TiO2/activated carbon composite material:Photocatalytic degradation of methylene blue solution[J]. Canadian Journal of Chemical Engineering, 2021.Doi: 10.1002/cjce.24097.
|
[6] |
SAKTHIVEL S, SHANKAR M V, PALANICHAMY M, et al. Enha-ncement of photocatalytic activity by metal deposition:Characterisa-tion and photonic efficiency of Pt,Au and Pd deposited on TiO2 catalyst[J]. Water Research, 2004, 38:3001-3008.
|
[7] |
SEERY M K, GEORGE R, FLORIS P, et al. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 189:258-263.
|
[8] |
YAVARI N, TAVAKOLI O, PARNIAN M J. Efficient photocatalytic degradation of phenol by Ag-doped TiO2 nanocomposite photoca-talysts under visible light irradiation in a three-phase fluidized bed reactor[J]. Chemical Papers, 2021, 75:3181-3196.
|
[9] |
YANG J, LUO X. Ag-doped TiO2 immobilized cellulose-derived car- bonbeads:One-Pot preparation,photocatalytic degradation perfro-manceand mechanism of ceftriaxone sodium[J]. Applied Surface Science, 2021, 542.Doi: 10.1016/j.apsusc.2020.148724.
|
[10] |
TEKIN D, TEKIN T, KIZILTAS H. Synjournal and characterization of TiO2 and Ag/TiO2 thin-film photocatalysts and their efficiency in the photocatalytic degradation kinetics of Orange G dyestuff[J]. Desalination and Water Treatment, 2020, 198:376-385.
|
[11] |
MATOS J, FIERRO V, MONTAÑA R, et al. High surface area mic-roporous carbons as photoreactors for the catalytic photodegradation of methylene blue under UV-vis irradiation[J]. Applied Catalysis A:General, 2016, 517:1-11.
|
[12] |
ZHANG H, BANFIELD J F. Understanding polymorphic phase tra-nsformation behavior during growth of nanocrystalline aggregates:Insights from TiO2[J]. Journal of Physical Chemistry B, 2000, 104(15):3481-3487.
|
[13] |
ATOUT H, BOUGUETTOUCHA A, CHEBLI D, et al. Integration of adsorption and photocatalytic degradation of methylene blue using TiO2 supported on granular activated carbon[J]. Arabian Jo-urnal for Science and Engineering, 2017, 42:1475-1486.
|
[14] |
MUNIANDY L, ADAM F, MOHAMED A R, et al. Carbon modified anatase TiO2 for the rapid photo degradation of methylene blue:A comparative study[J], Surfaces and Interfaces, 2016, 5:19-29.
|
[15] |
BABUA B, KOUTAVARAPUA R, SHIMA J, et al. Enhanced solar-light-driven photocatalytic and photoelectrochemical properties of zinc tungsten oxide nanorods anchored on bismuth tungsten oxide nanoflakes[J]. Chemophere, 2020, 268.Doi: 10.1016/j.chemosp-sphere.2020.129346.
|
[16] |
ZHAO Z, WANG Y, XU J, et al. AgCl-loaded mesoporous anatase TiO2 with large specific surface area for enhancing photocataly-sis[J]. Applied Surface Science, 2015, 351:416-424.
|
[17] |
QIAN S, PU S, ZHANG Y, et al. New insights on the enhanced non-hy-droxyl radical contribution under copper promoted TiO2/GO for the photodegradation of tetracycline hydrochloride[J]. Journal of Environmental Sciences, 2021, 100:99-109.
|
[18] |
SAHOOA C, GUPTAA A K. Photocatalytic degradation of methyl blue by silver iondoped titania:Identification of degradation pro-ducts by GC-MS and IC analysis[J]. Journal of Environmental Sci-ience and Health,Part A, 2015, 50:1333-1341.
|