Inorganic Chemicals Industry ›› 2025, Vol. 57 ›› Issue (4): 52-59.doi: 10.19964/j.issn.1006-4990.2024-0220
• Research & Development • Previous Articles Next Articles
YE Bin1(), XU Shun2(
), HUANG Hua1
Received:
2024-04-22
Online:
2025-04-10
Published:
2025-04-21
Contact:
XU Shun
E-mail:314749791@qq.com;469811386@qq.com
CLC Number:
YE Bin, XU Shun, HUANG Hua. Simulation study on thermal runaway of lithium-ion battery modules in high temperature environments[J]. Inorganic Chemicals Industry, 2025, 57(4): 52-59.
Table 6
Comparison table of battery thermal runaway at different heat transfer coefficients"
环境 温度/℃ | 传热系数/ (W∙m-2∙K-1) | 失控 初始时间/s | 失控 初始温度/℃ | 失控顶 峰时间/s | 失控顶峰温度/℃ |
---|---|---|---|---|---|
140 | 10 | 16 500 | 182.74 | 16 700 | 362.23 |
15 | 12 900 | 182.03 | 13 200 | 356.55 | |
25 | 10 000 | 184.85 | 10 400 | 346.66 | |
170 | 5 | 16 200 | 162.92 | 16 500 | 375.06 |
10 | 9 200 | 167.33 | 9 400 | 374.66 | |
15 | 6 700 | 167.49 | 6 900 | 375.01 | |
25 | 4 600 | 168.09 | 4 800 | 374.08 |
Table 7
Comparison table of battery module runaway at different initial temperatures"
环境 温度/℃ | 初始 温度/℃ | 失控 初始时间/s | 失控初始温度/℃ | 失控 顶峰时间/s | 失控顶峰温度/℃ |
---|---|---|---|---|---|
127 | 100 | 18 100 | 209.59 | 18 400 | 324.80 |
140 | 20 | 16 300 | 172.33 | 16 700 | 359.14 |
40 | 14 900 | 171.01 | 15 300 | 360.13 | |
60 | 13 000 | 172.88 | 13 300 | 366.37 | |
100 | 7 700 | 169.72 | 8 100 | 365.02 | |
170 | 20 | 9 280 | 180.75 | 9 360 | 379.58 |
40 | 8 260 | 183.31 | 8 340 | 379.29 | |
60 | 7 020 | 179.39 | 7 140 | 377.43 | |
100 | 3 980 | 184.91 | 4 060 | 384.42 |
[1] | 国务院办公厅印发《新能源汽车产业发展规划(2021—2035年)》[J].汽车零部件,2020(12):33. |
The General Office of the State Council issued the development plan for the new energy vehicle industry(2021—2035)[J].Automotive Parts,2020(12):33. | |
[2] | WU Jipeng, WENG Suting, ZHANG Xiao,et al.In situ detecting thermal stability of solid electrolyte interphase(SEI)[J].Small,2023,19(25):e2208239. |
[3] | HE Yuanhua, ZHANG Liheng, ZHANG Di,et al.Experimental and computational analyses of thermal runaway behavior of lithium ion pouch battery at low ambient pressure[J].Journal of Electrochemical Energy Conversion and Storage,2023,20(4):041007. |
[4] | LU Xiaojuan, Jiankang HAI, ZHANG Feng,et al.Preparation and infiltration of NASICON-type solid electrolytes with microporous channels[J].Ceramics International,2022,48(2):2203-2211. |
[5] | QIN Peng, JIA Zhuangzhuang, WU Jingyun,et al.The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J].Applied Energy,2022,313:118767. |
[6] | 张赛,汪振毅,胡世旺.基于电化学-热-力耦合模型的锂离子电池热失控研究[J].安全与环境学报,2024,24(2):551-559. |
ZHANG Sai, WANG Zhenyi, HU Shiwang.Research on the thermal runaway of lithium-ion batteries based on an electrochemical-thermal-mechanical coupling model[J].Journal of Safety and Environment,2024,24(2):551-559. | |
[7] | 黄文才.基于COMSOL的锂离子电池热失控模拟分析和研究[D].成都:西南交通大学,2019. |
HUANG Wencai.Simulation analysis and research on thermal runaway of lithium-ion batteries based on COMSOL[D].Chengdu:Southwest Jiaotong University,2019. | |
[8] | 王皆佳,贾君瑞,赵彤,等.锂离子动力电池热失控特性实验研究[J].电子设计工程,2023,31(5):111-115. |
WANG Jiejia, JIA Junrui, ZHAO Tong,et al.Experimental research on thermal runaway characteristics of Li-ion power batte-ry [J].Electronic Design Engineering,2023,31(5):111-115. | |
[9] | 王鑫,龚峰,张志辉,等.用于玻璃热压印的高温快速均匀加热模块的制造及优化[J].光学精密工程,2023,31(15):2203-2217. |
WANG Xin, GONG Feng, ZHANG Zhihui,et al.Fabrication and optimization of high-temperature uniform rapid heating module for glass hot embossing[J].Optics and Precision Engineering,2023,31(15):2203-2217. | |
[10] | 梅文昕,段强领,王青山,等.大型磷酸铁锂电池高温热失控模拟研究[J].储能科学与技术,2021,10(1):202-209. |
MEI Wenxin, DUAN Qiangling, WANG Qingshan,et al.Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures[J].Energy Storage Science and Technology,2021,10(1):202-209. | |
[11] | 孙延先,姜兆华.锂离子电池模组过充热失控扩散仿真[J].电池,2019,49(6):481-484. |
SUN Yanxian, JIANG Zhaohua.Simulation of thermal runaway diffusion in overcharging of Li-ion battery module[J].Battery Bimonthly,2019,49(6):481-484. | |
[12] | 常润泽,郑斌,冯旭宁,等.隔热层对锂电池模组热失控蔓延特性影响的实验研究[J].汽车工程,2021,43(10):1448-1456. |
CHANG Runze, ZHENG Bin, FENG Xuning,et al.Experimental study on the effects of thermal insulation layers on the propagation characteristics of thermal runaway in lithium-ion battery module[J].Automotive Engineering,2021,43(10):1448-1456. | |
[13] | 王功全,孔得朋,平平,等.锂离子电池热失控模型综述[J].电气工程学报,2022,17(4):61-71. |
WANG Gongquan, KONG Depeng, PING Ping,et al.Thermal runaway modeling of lithium-ion batteries:A review[J].Journal of Electrical Engineering,2022,17(4):61-71. | |
[14] | 杜光超.三元锂离子电池高温热失控试验与仿真研究[D].青岛:青岛大学,2020. |
DU Guangchao.High temperature thermal runaway test and simulation study of ternary lithium-ion batteries[D].Qingdao:Qingdao University,2020. | |
[15] | 黄文才,胡广地,张琦,等.锂离子电池高温热模拟及热行为[J].电池,2018,48(6):410-413. |
HUANG Wencai, HU Guangdi, ZHANG Qi,et al.High temperature thermal simulation and thermal behavior of Li-ion battery[J].Battery Bimonthly,2018,48(6):410-413. | |
[16] | 董海斌,羡学磊,马建琴,等.锰酸锂电池热失控特性研究[J].消防科学与技术,2022,41(1):21-25. |
DONG Haibin, XIAN Xuelei, MA Jianqin,et al.Research on thermal runaway characteristics of lithium manganate battery[J].Fire Science and Technology,2022,41(1):21-25. | |
[17] | 羡学磊,董海斌,张少禹,等.三元锂离子动力电池热失控及火灾特性研究[J].储能科学与技术,2020,9(1):239-248. |
XIAN Xuelei, DONG Haibin, ZHANG Shaoyu,et al.Thermal runaway and fire characteristics of NCM lithium-ion power battery[J].Energy Storage Science and Technology,2020,9(1):239-248. | |
[18] | 李恺翔.电动汽车动力电池热特性及热管理方式研究[D].天津:天津大学,2019. |
LI Kaixiang.Research on thermal characteristics and management methods of electric vehicle power batteries [D].Tianjin:Tianjin University,2019. | |
[19] | 金标,张静秋,高俊国,等.电动汽车用软包动力锂电池热-结构耦合分析[J].可再生能源,2016,34(4):563-567. |
JIN Biao, ZHANG Jingqiu, GAO Junguo,et al.Thermal-structural coupling analysis of pouch power lithium-ion battery for electrical vehicles[J].Renewable Energy Resources,2016,34(4):563-567. | |
[20] | 徐亮.三元锂离子电池直径和荷电状态对热失控传播影响研究[J].消防科学与技术,2022,41(7):899-904. |
XU Liang.Study on the influence of ternary lithium-ion battery diameter and state of charge on thermal runaway propagation[J].Fire Science and Technology,2022,41(7):899-904. | |
[21] | 杨娜,仝义鑫,赵立军,等.基于相变材料的电池模组热失控传播过程研究[J].汽车工程,2021,43(8):1161-1167. |
YANG Na, TONG Yixin, ZHAO Lijun,et al.Study on thermal runaway propagation process of battery module based on phase change materials[J].Automotive Engineering,2021,43(8):1161-1167. |
[1] | WANG Peng, PU Zhihua, WANG Tianxiang, LIN Jingyi, WAN Yuanxin. Investigation on effecte of different carbon source on processing performance of LiFePO4 [J]. Inorganic Chemicals Industry, 2025, 57(4): 60-66. |
[2] | LI Chao, WANG Liping, GAO Guimei, ZHANG Yunfeng, HONG Yu, LIU Darui, XU Lijun, CUI Yongjie. Study on reaction mechanism of acid leaching lithium from circulating fluidized bed fly ash [J]. Inorganic Chemicals Industry, 2025, 57(3): 101-107. |
[3] | MA Jingyuan, LI Yan, ZHOU Hanjie, LI Jiangang. Research progress of PEO based organic/inorganic composite solid electrolyte [J]. Inorganic Chemicals Industry, 2025, 57(3): 1-8. |
[4] | JIANG Minghui, ZHANG Liqing, PANG Meijing, LIU Chao. Research progress of ion channels for achieving monovalent cation sieving [J]. Inorganic Chemicals Industry, 2025, 57(3): 9-17. |
[5] | SONG Jiaxi, JI Renfei, CHEN Jun, LIN Sen, YU Jianguo. Research on characteristics analysis and pretreatment on deeply deactivated power battery ternary cathode materials [J]. Inorganic Chemicals Industry, 2025, 57(2): 44-49. |
[6] | KONG Lingjie, LI Guangbi, XIE Jiahao, YANG Xinhui, BAI Xiaoqin. Research progress on lithium extraction technology from salt lake brine [J]. Inorganic Chemicals Industry, 2025, 57(1): 14-26. |
[7] | ZHANG Shanshan, ZENG Yule, ZHANG Ting, LIN Sen, LIU Chenglin. Research progress of cathode pre-lithiation technology for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2025, 57(1): 1-13. |
[8] | ZHAO Runze, QIAN A′niu. Research progress of lithium recovery for spent lithium-ion batteries and preparation in battery-grade lithium carbonate [J]. Inorganic Chemicals Industry, 2024, 56(12): 70-78. |
[9] | FU Yu, ZHANG Boshuang, YANG Jianmao, LIU Jianyun. Research progress of lithium manganese oxide materials in electrochemical lithium extraction applications [J]. Inorganic Chemicals Industry, 2024, 56(12): 62-69. |
[10] | WANG Ruirui, ZHU Chaoliang, MU Bing, MA Wanxia, FAN Jie, XU Guowang, SHI Yifei, DENG Xiaochuan, QING Binju. Preparation of cubic manganese carbonate by hydrothermal method and its application in extraction of lithium [J]. Inorganic Chemicals Industry, 2024, 56(12): 94-103. |
[11] | GE Jianhua, XIE Minyan, OUYANG Quansheng, SHAO Jiaojing. Advances in regeneration processes of cathode materials for spent power batteries [J]. Inorganic Chemicals Industry, 2024, 56(12): 79-87. |
[12] | CHENG Chunchun, LI Yulong, ZHANG Zhiqiang, ZUO Shuo, QIN Donglan, ZHOU Na, WANG Jiaqin. Study on agglomeration phenomenon and regulation method of lithium carbonate crystal prepared from potassium carbonate [J]. Inorganic Chemicals Industry, 2024, 56(10): 47-54. |
[13] | MA Shuqing, LI Changwen, SHI Chenglong, QIN Yaru. Kinetic study of lithium extraction from solution with iron-based ionic liquid system [J]. Inorganic Chemicals Industry, 2024, 56(9): 60-66. |
[14] | TIAN Peng, ZHANG Haoran, XU Jingang, MOU Chenxi, XU Qianjin, NING Guiling. Study on aluminum sol modified anode and cathode materials for lithium ion batteries [J]. Inorganic Chemicals Industry, 2024, 56(9): 44-53. |
[15] | ZHU Zongjiang, WANG Gang, WEI Yuanfeng, TANG Yanhong, KAKUTA Cheng, LIU Chengbin. Research progress and prospect of resourceful recycling technology of electrolyte from decommissioned lithium⁃ion battery [J]. Inorganic Chemicals Industry, 2024, 56(7): 11-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297