Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (12): 19-27.doi: 10.19964/j.issn.1006-4990.2022-0056
• Reviews and Special Topics • Previous Articles Next Articles
YANG Fengyu1,2(),DONG Hua3,CHEN Botao1,2(
)
Received:
2022-04-12
Online:
2022-12-10
Published:
2022-12-19
Contact:
CHEN Botao
E-mail:yangfengyu@htmgl.com.cn;chenbotao@htmgl.com.cn
CLC Number:
YANG Fengyu,DONG Hua,CHEN Botao. Research progress of reaction mechanism of lithium-rich manganese-based cathode materials[J]. Inorganic Chemicals Industry, 2022, 54(12): 19-27.
1 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2):448-478. |
LI Wenjun, XU Hangyu, YANG Qi, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2):448-478. | |
2 | 况新亮, 刘垂祥, 熊朋. 锂离子电池产业分析及市场展望[J]. 无机盐工业, 2022, 54(8):12-19, 32. |
KUANG Xinliang, LIU Chuixiang, XIONG Peng. Industry analysis and market prospect of lithium ion battery[J]. Inorganic Chemicals Industry, 2022, 54(8):12-19, 32. | |
3 | 李雨, 赵慧春, 白莹, 等. 高能量密度层状富锂锰基正极材料的改性研究进展[J]. 储能科学与技术, 2018, 7(3):394-403. |
LI Yu, ZHAO Huichun, BAI Ying, et al. Progress in the modification of lithium-rich manganese-based layered cathode material[J]. Energy Storage Science and Technology, 2018, 7(3):394-403. | |
4 | 严武渭, 柳永宁, 崇少坤, 等. 高能量密度锂离子电池用富锂正极材料[J]. 化学进展, 2017, 29(S2):198-209. |
YAN Wuwei, LIU Yongning, CHONG Shaokun, et al. Lithium-rich cathode materials for high energy-density lithium-ion batteries[J]. Progress in Chemistry, 2017, 29(S2):198-209. | |
5 | ZHAO Shuoqing, YAN Kang, ZHANG Jinqiang, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries[J]. Angewandte Chemie:International Ed.in English, 2021, 60(5):2208-2220. |
6 |
CROY J R, GUTIERREZ A, HE Meinan, et al. Development of manganese-rich cathodes as alternatives to nickel-rich chemistri-es[J]. Journal of Power Sources, 2019, 434.Doi:10.1016/j.jpowsour.2019.226706 .
doi: 10.1016/j.jpowsour.2019.226706 |
7 | EUM D, KIM B, KIM S J, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes[J]. Nature Materials, 2020, 19(4):419-427. |
8 |
CROY J R, GARCIA J C, IDDIR H, et al. Harbinger of hysteresis in lithium-rich oxides:Anionic activity or defect chemistry of cation migration[J]. Journal of Power Sources, 2020, 471.Doi:10.1016/j.jpowsour.2020.228335 .
doi: 10.1016/j.jpowsour.2020.228335 |
9 | ASSAT G, GLAZIER S L, DELACOURT C, et al. Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry[J]. Nature Energy, 2019, 4(8):647-656. |
10 | 王兆翔, 马君, 高玉瑞, 等. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11):1591-1614. |
WANG Zhaoxiang, MA Jun, GAO Yurui, et al. Stabilizing structure and performances of lithium rich layer-structured oxide cathode materials[J]. Progress in Chemistry, 2019, 31(11):1591-1614. | |
11 | 熊凡, 王同振, 高强, 等. Li2MnO3复合LiNi0.8Co0.1Mn0.1O2材料制备及电化学性能研究[J]. 无机盐工业, 2020, 52(1):68-72. |
XIONG Fan, WANG Tongzhen, GAO Qiang, et al. Study on synthesis and electrochemical performance of Li2MnO3-LiNi0.8Co0.1Mn0.1O2 composite cathodes materials[J]. Inorganic Chemicals Industry, 2020, 52(1):68-72. | |
12 | ZUO Wenhua, LUO Mingzeng, LIU Xiangsi, et al. Li-rich cathodes for rechargeable Li-based batteries:Reaction mechanisms and advanced characterization techniques[J]. Energy & Environmental Science, 2020, 13(12):4450-4497. |
13 | JOHNSON C S, KIM J S, LEFIEF C, et al. The significance of the Li2MnO3 component in‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes[J]. Electrochemistry Communications, 2004, 6(10):1085-1091. |
14 | LU Zhonghua, DAHN J R. Structure and electrochemistry of layered Li[Cr x Li(1/3– x/3)Mn(2/3–2 x/3)]O2 [J]. Journal of the Electrochemical Society, 2002, 149(11):A1454-A1459. |
15 | JARVIS K A, DENG Zengqiang, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries:Evidence of a solid solution[J]. Chemistry of Materials, 2011, 23(16):3614-3621. |
16 | GENEVOIS C, KOGA H, CROGUENNEC L, et al. Insight into the atomic structure of cycled lithium-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 using HAADF STEM and electron nanodiffraction[J]. The Journal of Physical Chemistry C, 2015, 119(1):75-83. |
17 | KIM J S, JOHNSON C S, VAUGHEY J T, et al. Electrochemical and structural properties of xLi2M‘O3·(1-x)LiMn0.5Ni0.5O2 elect-rodes for lithium batteries (M‘=Ti,Mn,Zr;0≤x⩽0.3)[J]. Chemistry of Materials, 2004, 16(10):1996-2006. |
18 |
YU Xiqian, Yingchun LYU, GU Lin, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Advanced Energy Materials, 2014, 4(5).Doi:10.1002/aenm.201300950 .
doi: 10.1002/aenm.201300950 |
19 | MENG Y S, CEDER G, GREY C P, et al. Cation ordering in layered O3 Li[Ni x Li1/3-2 x/3Mn2/3- x/3]O2(0≤x≤1/2) compounds[J]. Chemistry of Materials, 2005, 17(9):2386-2394. |
20 | MOHANTY D, LI Jianlin, ABRAHAM D P, et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries:Origin of the tetrahedral cations for spinel conversion[J]. Chemistry of Materials, 2014, 26(21):6272-6280. |
21 | MCCALLA E, ROWE A W, SHUNMUGASUNDARAM R, et al. Structural study of the Li-Mn-Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries[J]. Chemistry of Materials, 2013, 25(6):989-999. |
22 | MCCALLA E, LOWARTZ C M, BROWN C R, et al. Formation of layered-layered composites in the Li-Co-Mn oxide pseudoternary system during slow cooling[J]. Chemistry of Materials, 2013, 25(6):912-918. |
23 | LI Jing, SHUNMUGASUNDARAM R, DOIG R, et al. In situ X-ray diffraction study of layered Li-Ni-Mn-Co oxides:Effect of particle size and structural stability of core-shell materials[J]. Chemistry of Materials, 2016, 28(1):162-171. |
24 | CROY J R, KANG S H, BALASUBRAMANIAN M, et al. Li2MnO3-based composite cathodes for lithium batteries:A novel synthesis approach and new structures[J]. Electrochemistry Communications, 2011, 13(10):1063-1066. |
25 | ROSSOUW M, THACKERAY M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications[J]. Materials Research Bulletin, 1991, 26(6):463-473. |
26 | LU Zhonghua, MACNEIL D D, DAHN J R. Layered cathode materials Li[Ni x Li(1/3-2 x/3)Mn(2/3- x/3)]O2 for lithiumion batteries[J]. Electrochemical and Solid-State Letters, 2001, 4(11):A191-A194. |
27 |
ZUO Y, LI B, JIANG N, et al. A high-capacity O2- Type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials, 2018, 30(16).Doi:10.1002/adma.201707255 .
doi: 10.1002/adma.201707255 |
28 | OHZUKU T, NAGAYAMA M, TSUJI K, et al. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries:Toward rechargeable capacity more than 300 mA·h·g–1[J]. Journal of Materials Chemistry, 2011, 21(27):10179-10188. |
29 | MUHAMMAD S, KIM H, KIM Y, et al. Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries[J]. Nano Energy, 2016, 21: 172-184. |
30 |
XU Jing, SUN Meiling, QIAO Ruimin, et al. Elucidating anionic oxygen activity in lithium-rich layered oxides[J]. Nature Communications, 2018, 9.Doi:10.1038/s41467-018-03403-9 .
doi: 10.1038/s41467-018-03403-9 |
31 | ROBERTSON A D, BRUCE P G. The origin of electrochemical activity in Li2MnO3[J]. Chemical Communications, 2002(23):2790-2791. |
32 | AYDINOL M K, KOHAN A F, CEDER G, et al. Ab initiostudy of lithium intercalation in metal oxides and metal dichalcogenid-es[J]. Physical Review B, 1997, 56(3):1354-1365. |
33 | KOYAMA Y, TANAKA I, NAGAO M, et al. First-principles study on lithium removal from Li2MnO3[J]. Journal of Power Sources, 2009, 189(1):798-801. |
34 | SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Nature Materials, 2013, 12(9):827-835. |
35 | KOGA H, CROGUENNEC L, MÉNÉTRIER M, et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2[J]. Journal of the Electrochemical Society, 2013, 160(6):A786-A792. |
36 | GRIMAUD A, HONG W T, SHAO-HORN Y, et al. Anionic redox processes for electrochemical devices[J]. Nature Materials, 2016, 15(2):121-126. |
37 | LU Zhonghua, DAHN J R. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies[J]. Journal of the Electrochemical Society, 2002, 149(7):A815-A822. |
38 | LU Zhonghua, BEAULIEU L Y, DONABERGER R A, et al. Synthesis,structure,and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. Journal of the Electrochemical Society, 2002, 149(6):A778-A791. |
39 | ARMSTRONG A R, HOLZAPFEL M, NOVÁK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26):8694-8698. |
40 | THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn,Ni,Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30):3112-3125. |
41 | YU D Y W, YANAGIDA K, KATO Y, et al. Electrochemical activities in Li2MnO3[J]. Journal of the Electrochemical Society, 2009, 156(6):A417-A424. |
42 | SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8(7):692-697. |
43 | MCCALLA E, ABAKUMOV A M, SAUBANÈRE M, et al. Visualization of O—O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015, 350(6267):1516-1521. |
44 | ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteri-es[J]. Nature Energy, 2018, 3(5):373-386. |
45 |
ASSAT G, FOIX D, DELACOURT C, et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nature Communications, 2017, 8.Doi:10.1038/s41467-017-02291-9 .
doi: 10.1038/s41467-017-02291-9 |
46 | LUO Kun, ROBERTS M R, HAO Rong, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry, 2016, 8(7):684-691. |
47 |
GENT W E, LIM K, LIANG Yufeng, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, 8.Doi:10.1038/s41467-017-02041-x .
doi: 10.1038/s41467-017-02041-x |
48 | CHEN H, ISLAM M S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization[J]. Chemistry of Materials, 2016, 28(18):6656-6663. |
49 | RADIN M D, VINCKEVICIUTE J, SESHADRI R, et al. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials[J]. Nature Energy, 2019, 4(8):639-646. |
50 | 周伟, 陈彦逍, 郭孝东, 等. 铝掺杂富锂锰基正极材料Li1.2Ni0.2Mn0.6O2的研究[J]. 无机盐工业, 2021, 53(6):128-133. |
ZHOU Wei, CHEN Yanxiao, GUO Xiaodong, et al. Study on aluminum-doped lithium-rich manganese-based cathode materials of Li1.2Ni0.2Mn0.6O2[J]. Inorganic Chemicals Industry, 2021, 53(6):128-133. | |
51 |
PHATTHARASUPAKUN N, GENG Chenxi, JOHNSON M B, et al. Impact of Cr doping on the voltage fade of Li-rich Mn-rich Li1.11Ni0.33Mn0.56O2 and Li1.2Ni0.2Mn0.6O2 positive electrode materials[J]. Journal of the Electrochemical Society, 2020, 167(16).Doi:10.1149/1945-7111/abd44e .
doi: 10.1149/1945-7111/abd44e |
52 | 张亚锋, 李宏伟, 赵志坚. 无人机用锂离子电池正极材料Li1.20Mn0.54Ni0.13Co0.13O2的Mo6+掺杂改性研究[J]. 无机盐工业, 2021, 53(11):81-85. |
ZHANG Yafeng, LI Hongwei, ZHAO Zhijian. Study on Mo6+ doping into Li1.20Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries applied in unmanned aerial vehicles[J]. Inorganic Che-micals Industry, 2021, 53(11):81-85. | |
53 | LIU Shiqi, WANG Boya, ZHANG Xu, et al. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries[J]. Matter, 2021, 4(5):1511-1527. |
54 |
HUA Weibo, CHEN Mingzhe, SCHWARZ B, et al. Lithium/oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 oxides[J]. Advanced Energy Materials, 2019, 9(8).Doi:10.1002/aenm.201803094 .
doi: 10.1002/aenm.201803094 |
55 |
LEI Yike, NI Jie, HU Zijun, et al. Surface modification of Li-rich Mn-based layered oxide cathodes:Challenges,materials,methods,and characterization[J]. Advanced Energy Materials, 2020, 10(41).Doi:10.1002/aenm.202002506 .
doi: 10.1002/aenm.202002506 |
56 | ZHAO Enyue, ZHANG Minghao, WANG Xuelong, et al. Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides[J]. Energy Storage Materials, 2020, 24: 384-393. |
57 | KIM S, AYKOL M, HEGDE V I, et al. Material design of high-capacity Li-rich layered-oxide electrodes:Li2MnO3 and beyond[J]. Energy & Environmental Science, 2017, 10(10):2201-2211. |
[1] | LI Chao, WANG Liping, GAO Guimei, ZHANG Yunfeng, HONG Yu, LIU Darui, XU Lijun, CUI Yongjie. Study on reaction mechanism of acid leaching lithium from circulating fluidized bed fly ash [J]. Inorganic Chemicals Industry, 2025, 57(3): 101-107. |
[2] | ZHANG Zhufeng, REN Yinshuan. Study on diluted magnetic semiconductor Cr-doped CdS nanostructures and magnetic properties [J]. Inorganic Chemicals Industry, 2025, 57(3): 50-57. |
[3] | TANG Kaijing, LIU Chuanbei, LI Yingding, JIANG Yong, WU Junnan, ZHANG Tao. Research on preparation and mechanism of superhydrophobic phosphogypsum products [J]. Inorganic Chemicals Industry, 2025, 57(1): 97-102. |
[4] | CHEN Xue, OUYANG Quansheng, SHAO Jiaojing. Recent research progress of lithium-sulfur batteries based on solid-solid reaction mechanism [J]. Inorganic Chemicals Industry, 2024, 56(9): 12-23. |
[5] | LIU Cijun, WU Ziyang, CHENG Shukai, CHEN Xuyong. Effect of recycled fine aggregate on mechanical properties and autogenous shrinkage of ultra-high performance concrete [J]. Inorganic Chemicals Industry, 2024, 56(9): 75-81. |
[6] | LUO Tong, YE Jianzhou, CHEN Shangwei, YANG Houwen, CHEN Fuping. Study on effect of ash calcium on properties of phosphorus building gypsum doped with PCE [J]. Inorganic Chemicals Industry, 2024, 56(8): 116-122. |
[7] | JIANG Bowen, LI Yanpei, RUI Yichuan, ZHANG Zefang. Study on structure⁃performance relationship of complex agent in CMP of 6063 aluminum alloy [J]. Inorganic Chemicals Industry, 2024, 56(8): 47-53. |
[8] | XIONG Cailian, SUN Guobin, LI Heng, XING Feng. Study on structure and electrical properties of Ba(Zr0.15Ti0.85)O3 doped ceramics [J]. Inorganic Chemicals Industry, 2024, 56(8): 60-66. |
[9] | LEI Xinyu, SUN Henghui, YUAN Xinqiang, ZHANG Wei, JIANG Peng, ZHANG Lizhai. Study on preparation of core-shell structure VO2(M)@SiO2 by silica sol-gel coating [J]. Inorganic Chemicals Industry, 2024, 56(6): 46-54. |
[10] | HU Jingrong, LI Xincong. Research on modified carbon aerogel/paraffin composite phase change thermal storage materials [J]. Inorganic Chemicals Industry, 2024, 56(5): 58-63. |
[11] | WANG Ruting, ZHAO Xiaorong, HUANG Xuquan, WANG Haojie, XUE Fei, CAI Jiawei. Research on preparation and early performance of mixed phase phosphogypsum-based cementing materials [J]. Inorganic Chemicals Industry, 2024, 56(3): 98-104. |
[12] | FU Yu, ZHANG Boshuang, YANG Jianmao, LIU Jianyun. Research progress of lithium manganese oxide materials in electrochemical lithium extraction applications [J]. Inorganic Chemicals Industry, 2024, 56(12): 62-69. |
[13] | LI Junxi, XIE Zhipeng, LIU Yunfeng, MA Long, CHEN Jiale, ZHANG Da, YANG Bin, LIANG Feng. Research progress of preparation of metal borides and their military applications [J]. Inorganic Chemicals Industry, 2024, 56(12): 13-28. |
[14] | BI Chao, ZHANG Xiaokang, WANG Xiugui. Study on hydration characteristics and durability of high-strength concrete modified by mechanically activated waste incineration slag [J]. Inorganic Chemicals Industry, 2024, 56(12): 142-149. |
[15] | HU Wenjuan, SHEN Xiaozhong, WANG Rujia, LU Lu, ZOU Lianli. Effect of annealing temperature on phase structure and electrochemical performance of hydrogen storage alloys for automotive batteries [J]. Inorganic Chemicals Industry, 2024, 56(11): 51-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297