无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ

无机盐工业 ›› 2025, Vol. 57 ›› Issue (7): 99-109.doi: 10.19964/j.issn.1006-4990.2024-0554

• 环境·健康·安全 • 上一篇    下一篇

碳酸钾活化藻基生物炭吸附去除水中硝基咪唑类抗生素研究

杨晶晶1,2(), 徐晨晨1,2, 朱丽燕3, 蒯强1,2, 吴兵党1,2, 黄天寅1,2()   

  1. 1.苏州科技大学环境科学与工程学院,江苏 苏州 215009
    2.苏州市海绵城市技术重点实验室,江苏 苏州 215009
    3.苏州市河道管理处,江苏 苏州 215011
  • 收稿日期:2024-10-16 出版日期:2025-07-10 发布日期:2024-11-22
  • 通讯作者: 黄天寅(1975— ),博士,教授,研究方向为水污染控制与水环境修复研究;E-mail:huangtianyin111@163.com
  • 作者简介:杨晶晶(1984— ),博士,副教授,研究方向为水质净化理论与技术研究;E-mail:yangjingjing@mail.usts.edu.cn
  • 基金资助:
    国家自然科学基金项目(52070137);苏州市科技计划项目(SS202107)

Study on adsorption and removal of nitroimidazole antibiotics in water by potassium carbonate-activated algae-based biochar

YANG Jingjing1,2(), XU Chenchen1,2, ZHU Liyan3, KUAI Qiang1,2, WU Bingdang1,2, HUANG Tianyin1,2()   

  1. 1. School of Environmental Science and Engineering,Suzhou University of Science and Technology,Suzhou 215009,China
    2. Suzhou Key Laboratory of Sponge City Technology,Suzhou 215009,China
    3. Suzhou River Management Department,Suzhou 215011,China
  • Received:2024-10-16 Published:2025-07-10 Online:2024-11-22

摘要:

针对微藻残渣资源化途径选择和水中抗生素去除难题,以蛋白核小球藻残渣为原料,通过一步碱活化法制备了碳酸钾活化的藻基生物炭(KBC)。采用氮气吸附-脱附仪、扫描电镜(SEM)、红外光谱仪(FT-IR)、元素分析仪(EA)等对所制备的藻基生物炭进行了表征。结果显示,碳酸钾活化显著提高了KBC的比表面积和孔容,分别达到697.70 m2/g和0.299 3 cm3/g,同时炭表面出现了大量含氧和含氮官能团。考察了吸附时间、吸附剂投加量、溶液pH、离子强度等对吸附去除甲硝唑(MNZ)、二甲硝咪唑(DMZ)、奥硝唑(ONZ)性能的影响,表明吸附主要在前5 min内快速发生,吸附量可以达到吸附平衡时吸附量的85%,并在2 h内基本达到吸附平衡状态。溶液pH和共存离子强度对KBC吸附MNZ、DMZ和ONZ的效果影响较小。MNZ和DMZ在KBC上的吸附行为更符合准二级动力学和Langmuir等温线模型,最大单层吸附量分别为334.28 mg/g和302.45 mg/g;而ONZ的吸附行为更符合准一级动力学和Freundlich等温线模型,表现为多层吸附。热力学分析显示,吸附过程均是吸热、熵增过程且自发进行。KBC吸附MNZ、DMZ和ONZ的主要机制是氢键、π-π键作用和孔隙填充,此外,对ONZ的吸附还存在p-π键作用。KBC具有良好的再生性能和优异的吸附性能,为硝基咪唑类抗生素的吸附去除提供了一种新型吸附剂,展现了藻基生物炭在抗生素污染治理方面的应用潜力。

关键词: 碳酸钾活化, 蛋白核小球藻残渣, 生物炭, 吸附, 硝基咪唑类抗生素

Abstract:

To address the environmental challenges of resource recovery from microalgae residues and the removal of antibiotics from water,the protein-nucleated Chlorella pyrenoidosa residue was employed as a raw material to prepare potassium carbonate-activated algae-based biochar(KBC) through a simplified one-step alkaline activation method.The synthesized KBC was characterized using nitrogen adsorption-desorption apparatus,scanning electron microscope(SEM),Fourier transform infrared spectrometer(FT-IR),and elemental analyzer(EA).The results showed that potassium carbonate-activation significantly enhanced the specific surface area and pore volume of KBC,reaching 697.70 m2/g and 0.299 3 cm3/g,respectively,while a large number of oxygen- and nitrogen-containing groups appeared on the surface of the biochar.The effects of adsorption time,adsorbent dosage,solution pH,and ionic strength on the removal performance of metronidazole(MNZ),dimetridazole(DMZ),and ornidazole(ONZ) by KBC were investigated.Rapid adsorption occurred within the first 5 min,achieving approximately 85% of the equilibrium adsorption capacity,with equilibrium reached within 2 h.The pH and ionic strength of the solution had minimal effects on the efficiency of KBC in adsorbing MNZ,DMZ,and ONZ.The adsorption behavior of MNZ and DMZ on KBC could be better described by the pseudo-second-order kinetic model and the Langmuir isotherm model,with maximum monolayer adsorption capacities of 334.28 mg/g and 302.45 mg/g,respectively.In contrast,the adsorption behavior of ONZ on KBC was more consistent with the pseudo-first-order kinetic model and the Freundlich isotherm model,indicating a multilayer adsorption process.Thermodynamic analysis confirmed that the adsorption processes were endothermic,entropy-driven,and spontaneous.The primary mechanisms underlying the adsorption of MNZ,DMZ,and ONZ by KBC were hydrogen bonding,π-π stacking interactions,and pore filling.In addition,for the adsorption of ONZ,there was also a p-π bonding interaction.KBC demonstrated excellent regeneration capabilities and superior adsorption performance,offering a novel adsorbent for the removal of nitroimidazole antibiotics and showcasing the potential of algae-based biochar in antibiotic pollution remediation.

Key words: activation by potassium carbonate, Chlorella pyrenoidosa residue, biochar, adsorbent, nitroimidazole antibiotics

中图分类号: