无机盐工业 ›› 2024, Vol. 56 ›› Issue (6): 1-13.doi: 10.19964/j.issn.1006-4990.2023-0473
• 综述与专论 • 下一篇
收稿日期:
2023-09-28
出版日期:
2024-06-10
发布日期:
2024-06-20
通讯作者:
陈昆峰(1987— ),男,博士,教授,主要从事多尺度晶体材料生长制备与性能器件研究工作;E-mail:kunfeng.chen@sdu.edu.cn。作者简介:
陈宇能(1999— ),男,硕士,主要从事铌酸锂畴工程方面的研究;E-mail:2350202477@qq.com。
基金资助:
CHEN Yuneng1(), CHEN Kunfeng1(
), XUE Dongfeng2
Received:
2023-09-28
Published:
2024-06-10
Online:
2024-06-20
摘要:
铌酸锂是一种多功能晶体,具有压电、铁电、热释电、电光、声光、光弹、非线性等物理性质。随着铌酸锂铁电畴工程的不断进步和铌酸锂单晶薄膜技术的发展,铌酸锂的诸多优异性能已被开发出来,广泛应用于光波导、电光调制器、非线性光学、量子器件等领域,未来在光子学方面的广泛应用可能形成“铌酸锂谷”时代。着重介绍了铌酸锂的畴反转方法、生长机制、畴结构表征手段、铁电畴工程的应用,以及铌酸锂薄膜器件如光波导、电光器件、量子器件的最新研究进展。伴随着铌酸锂从“体块”走向“薄膜”,结合微加工技术使铌酸锂的应用领域从独立器件向小型多器件集成芯片转变,铌酸锂铁电畴工程在构建小型全集成芯片过程中将具有更重要的作用。
中图分类号:
陈宇能, 陈昆峰, 薛冬峰. 铌酸锂晶体铁电畴调控及器件应用研究进展[J]. 无机盐工业, 2024, 56(6): 1-13.
CHEN Yuneng, CHEN Kunfeng, XUE Dongfeng. Research progress of preparation and device application of lithium niobate crystal ferroelectric domain[J]. Inorganic Chemicals Industry, 2024, 56(6): 1-13.
表1
铌酸锂的材料特性总结[18]
类型 | 典型值/特性 |
---|---|
晶体结构 | 三方 |
折射率 | n0/ne:2.341/2.254 7@500 nm |
透明窗口 | 400~5 000 nm |
带隙 | 4.71 eV |
电光系数 | r13=9.6 pm/V;r22=6.8 pm/V;r33=30.9 pm/V;r42=32.6 pm/V |
二阶非线性系数 | d22(1.058 μm)=(2.46±0.23) pm/V;d31(1.058 μm)=(-4.64±0.66) pm/V;d33(1.058 μm)=(-41.7± 7.8) pm/V |
三阶非线性系数 | χ(3)=(0.61±0.092)×104 pm2/V2@1.047 μm |
光弹常数 | P11=-0.026;P12=0.090;P13=0.133;P14=-0.075;P31=0.179;P33=0.071;P41=-0.151;P44=0.146(无量纲) |
热释电系数 | -4×10-9 C/(cm2·℃)、25 ℃ |
热导率 | 5.234 W/(m·K)(以a轴或c轴为取向) |
热光系数 | 2.5×10-6 K-1(337 K,1 523 nm,寻常光) |
4×10-5 K-1(337 K,1 523 nm,非寻常光) | |
压电系数 | d15=6.8×10-11 C/N;d22=2.1×10-11 C/N;d31=-0.1 C/N;d33=0.6 C/N |
1 | 史国强,陈昆峰,唐供宾,等.铌酸锂晶体缺陷研究中的介尺度团簇演变[J].硅酸盐学报,2023,51(6):1425-1438. |
SHI Guoqiang, CHEN Kunfeng, TANG Gongbin,et al.Evolution of mesoscale clusters in study of defects in lithium niobate cryst-als[J].Journal of the Chinese Ceramic Society,2023,51(6):1425-1438. | |
2 | CHEN Kunfeng, LI Yanlu, PENG Chao,et al.Microstructure and defect characteristics of lithium niobate with different Li concentrations[J].Inorganic Chemistry Frontiers,2021,8(17):4006-4013. |
3 | LIU Feng, CHEN Kunfeng, XUE Dongfeng.How to fast grow large-size crystals?[J].Innovation [Cambridge(Mass)],2023,4(4):100458. |
4 | 王晓杰,张国权.铌酸锂铁电畴工程及其应用[J].物理实验,2020,40(8):1-13,27. |
WANG Xiaojie, ZHANG Guoquan.Ferroelectric domain engineering of lithium niobate and its applications[J].Physics Experimentation,2020,40(8):1-13,27. | |
5 | WANG Tianxin, CHEN Pengcheng, XU Chuan,et al.Periodically poled LiNbO3 crystals from 1D and 2D to 3D[J].Science China Technological Sciences,2020,63(7):1110-1126. |
6 | XUE Dongfeng, WU Sixin, ZHU Yingchun,et al.Nanoscale domain switching at crystal surfaces of lithium niobate[J].Chemical Physics Letters,2003,377(3/4):475-480. |
7 | ZHENG Mingyang, YAO Quan, WANG Bin,et al.Integrated multichannel lithium niobate waveguides for quantum frequency conversion[J].Physical Review Applied,2020,14(3):034035. |
8 | LI Junhui, CHEN Kaixin.Electro-optic tunable grating-assisted optical waveguide directional coupler in lithium niobate[J].Applied Physics B,2023,129(3):39. |
9 | CHEN Kunfeng, WU Jian, HU Qianyu,et al.Omni-functional crystal:Advanced methods to characterize the composition and homogeneity of lithium niobate melts and crystals[J].Exploration,2022, 2(4):20220059. |
10 | CHEN Kunfeng, ZHU Yunzhong, LIU Zhihua,et al.State of the art in crystallization of LiNbO3 and their applications[J].Molecules,2021,26(22):7044. |
11 | YANG Guoyu, LI Zhenyu, WU Kechen.Periodically poled monolayer lithium niobate for photonic chips of quantum devices[J].ACS Applied Optical Materials,2023,1(1):115-122. |
12 | ZHENG Yuanlin, CHEN Xianfeng.Nonlinear wave mixing in lithium niobate thin film[J].Advances in Physics X,2021,6(1):1889402. |
13 | VAZIMALI M G, FATHPOUR S.Applications of thin-film lithium niobate in nonlinear integrated photonics[J].Advanced Photonics,2022,4:034001. |
14 | HERTER A, SHAMS-ANSARI A, SETTEMBRINI F F,et al.Terahertz waveform synthesis in integrated thin-film lithium niobate platform[J].Nature Communications,2023,14:11. |
15 | HE Xiangke, XUE Dongfeng, KITAMURA K.Defects and domain engineering of lithium niobate crystals[J].Materials Science and Engineering:B,2005,120(1/2/3):27-31. |
16 | ZHANG Xu, XUE Dongfeng, KITAMURA K.Domain switching and surface fabrication of lithium niobate single crystals[J].Journal of Alloys and Compounds,2008,449(1/2):219-223. |
17 | BOES A, CORCORAN B, CHANG Lin,et al.Status and potential of lithium niobate on insulator(LNOI) for photonic integrated circuits[J].Laser & Photonics Reviews,2018,12(4):1700256. |
18 | CHEN Guanyu, LI Nanxi, DA N J,et al.Advances in lithium niobate photonics:Development status and perspectives[J].Advanced Photonics,2022,4:034003. |
19 | ZHANG Xu, XUE Dongfeng, KITAMURA K.Domain characteristics and chemical bonds of lithium niobate[J].Materials Science and Engineering:B,2005,120(1/2/3):21-26. |
20 | 孙军,郝永鑫,张玲,等.铌酸锂晶体及其应用概述[J].人工晶体学报,2020,49(6):947-964. |
SUN Jun, HAO Yongxin, ZHANG Ling,et al.Brief review of lithium niobate crystal and its applications[J].Journal of Synthetic Crystals,2020,49(6):947-964. | |
21 | FENG Duan, MING Naiben, HONG Jingfen,et al.Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J].Applied Physics Letters,1980,37(7):607-609. |
22 | ZHANG Zhiyong, ZHU Yongyuan, ZHU Shining,et al.Domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3 [J].Physica Status Soli- di(a),1996,153(1):275-279. |
23 | THIELE F, BRUCH F VOM, QUIRING V,et al.Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides[J].Optics Express,2020,28(20):28961-28968. |
24 | RAMBU A P, TIRON V, ONICIUC E,et al.Spontaneous polarization reversal induced by proton exchange in Z-cut lithium niobate α-phase channel waveguides[J].Materials,2021,14(23):7127. |
25 | KOKHANCHIK L S, EMELIN E V, SIROTKIN V V.Large regular arrays with submicron domains written by low-voltage e-beam on-Z cut of lithium niobate[J].Optical Materials,2022,128:112405. |
26 | KOKHANCHIK L S, EMELIN E V, SIROTKIN V V,et al.Deepening of domains at e beam writing on the Z surface of lithium niobate[J].Journal of Physics D:Applied Physics,2022,55(19):195302. |
27 | ALIKIN Y M, TURYGIN A P, ALIKIN D O,et al.Interaction of wedge-like domains created by local polarization reversal on nonpolar cut of lithium niobate[J].Ferroelectrics,2023,604(1):25-31. |
28 | KIPENKO I A, AKHMATKHANOV A R, CHUVAKOVA M A,et al.Domain wall motion and Barkhausen pulses in lithium niobate with tailored regular 2D domain structure[J].Ferroelectrics,2023,604(1):40-46. |
29 | GUO Jiaxing, CHEN Wenwen, CHEN Haisheng,et al.Recent progress in optical control of ferroelectric polarization[J].Advanced Optical Materials,2021,9(23):2002146. |
30 | WANG Xiaoliang, CAO Qiang, WANG Ruonan,et al.Domain growth driven by a femtosecond laser in lithium niobate crystal[J].Optics Letters,2023,48(3):566-569. |
31 | MING Naiben, HONG Jingfen, FENG Duan.The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals[J].Journal of Materials Science,1982,17(6):1663-1670. |
32 | CHEN Jun, ZHOU Qun, HONG Jinfeng,et al.Influence of growth striations on para-ferroelectric phase transitions:Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3 [J].Journal of Applied Physics,1989,66(1):336-341. |
33 | HUANG Lisheng, JAEGER N A F.Discussion of domain inversion in LiNbO3 [J].Applied Physics Letters,1994,65(14):1763-1765. |
34 | ZHANG Zhiyong, ZHU Yongyuan, WANG Haifeng,et al.Domain inversion in LiNbO3 and LiTaO3 induced by proton exchange[J].Physica B:Condensed Matter,2007,398(1):151-158. |
35 | GRESHNYAKOV E D, LISJIKH B I, AKHMATKHANOV A R,et al.Charged domain walls in lithium niobate and lithium tantalate crystals with composition gradients[J].Ferroelectrics,2023,604(1):32-39. |
36 | SAVELYEV E, AKHMATKHANOV A, KOSOBOKOV M,et al.Abnormal domain growth during polarization reversal in lithium niobate crystal modified by proton exchange[J].Crystals,2023,13(1):72. |
37 | NIU Yaru, YAN Xing, CHEN Jiaxuan,et al.Research progress on periodically poled lithium niobate for nonlinear frequency conversion[J].Infrared Physics and Technology,2022,125:104243. |
38 | SHUR V Y, AKHMATKHANOV A R, PELEGOVA E V.Self-organizing formation of dendrite domain structures in lithium niobate and lithium tantalate crystals[J].Ferroelectrics,2016,500(1):76-89. |
39 | LIU Qilu, SONG Yukun, WANG Fulei,et al.Ferroelectric domain reversal dynamics in LiNbO3 optical superlattice investigated with a real-time monitoring system[J].Small,2022,18(32):2270170. |
40 | 张辽原.铌酸锂铁电单晶薄膜异质集成及其电畴调控机理研究[D].太原:中北大学,2020. |
ZHANG Liaoyuan.Mechanism of Hetero integration and domain regulation of LiNbO3 ferroelectric single crystal films[D].Taiyuan:North University of China,2020. | |
41 | SHUR V Y, AKHMATKHANOV A R, BATURIN I S.Micro-and nano-domain engineering in lithium niobate[J].Applied Physics Reviews,2015,2(4):040604. |
42 | 吴越.光诱导掺镁铌酸锂晶体畴极化反转研究[D].杭州:浙江大学,2020. |
WU Yue.Research of light-assisted domain In-version on Mg-doped lithium niobate crystals[D].Hangzhou:Zhejiang University,2020. | |
43 | LISJIKH B I, KOSOBOKOV M S, EFIMOV A V,et al.Thermally assisted growth of bulk domains created by femtosecond laser in magnesium doped lithium niobate[J].Ferroelectrics,2023,604(1):47-52. |
44 | WANG Wenjie, KONG Yongfa, LIU Hongde,et al.Light-induced domain reversal in doped lithium niobate crystals[J].Journal of Applied Physics,2009,105(4):043105. |
45 | LIU Hongde, ZHU Meiling, LIANG Qirui,et al. In situ observation of light-assisted domain reversal in lithium niobate cryst-als[J].Optical Materials Express,2011,1(8):1433. |
46 | WANG Xiaoliang, CAO Qiang, WANG Ruonan,et al.Manipulation of ferroelectric domain inversion and growth by optically induced 3D thermoelectric field in lithium niobate[J].Applied Physics Letters,2022,121(18):1-6. |
47 | XU Xiaoyi, WANG Tianxin, CHEN Pengcheng,et al.Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J].Nature,2022,609:496-501. |
48 | FERRARO P, GRILLI S, NATALE P D. Ferroelectric crystals for photonic applications[M] .Berlin:Springer,2009. |
49 | LIANG Longyue, WANG Fulei, SANG Yuanhua,et al.Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes[J].CrystEngComm,2019,21(6):941- 947. |
50 | XU M, WANG M, CHEN Z,et al.Fabrication of pattern poled lithium niobate film and its nonlinear optical applications[J].Journal of Physics:Conference Series,2017,844:012008. |
51 | SHENG Yan, BEST A, BUTT H J,et al.Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation[J].Optics Express,2010,18(16):16539-16545. |
52 | MÜLLER M, SOERGEL E, BUSE K.Visualization of ferroelectric domains with coherent light[J].Optics Letters,2003,28(24):2515-2517. |
53 | STONE G, DIEROLF V.Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and nioba-te[J].Optics Letters,2012,37(6):1032-1034. |
54 | REITZIG S, RÜSING M, ZHAO Jie,et al. “Seeing is believing”:In-depth analysis by co-imaging of periodically-poled X-cut lithium niobate thin films[J].Crystals,2021,11(3):11030288. |
55 | BULLEN P S, HUANG H C, YANG H,et al.Microscopy and microRaman study of periodically poled domains in deeply thinned lithium niobate wafers[J].Optical Materials,2016,57:243-248. |
56 | LIANG Xu, YU Yiwen, LIU Ruijia,et al.Flexoelectricity in periodically poled lithium niobate by PFM[J].Journal of Physics D:Applied Physics,2022,55(33):335303. |
57 | SOERGEL E.Piezoresponse force microscopy (PFM)[J].Journal of Physics D:Applied Physics,2011,44(46):464003. |
58 | ZHANG Hanyue, CHEN Xiaogang, TANG Yuanyuan,et al.PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics[J].Chemical Society Reviews,2021,50(14):8248-8278. |
59 | WANG Xusheng, FENG Chenchen.Force-electric coupling of nanoscale ferroelectric domains based on piezoelectric force microscopy(PFM)[J].Journal of Nanomaterials,2022,2022:5123509. |
60 | VEENHUIZEN K, MCANANY S, VASUDEVAN R,et al.Ferroelectric domain engineering of lithium niobate single crystal confined in glass[J].MRS Communications,2019,9(1):334-339. |
61 | ZHANG Honghu, LI Qingyun, ZHU Houbin,et al.Optimization of periodic poling of x-cut lithium niobate thin film[J].Optical Materials,2022,131:112562. |
62 | MCLOUGHLIN T, BABBITT W R, NAKAGAWA W.Auger electron spectroscopy mapping of lithium niobate ferroelectric domains with nano-scale resolution[J].Optical Materials Express,2023,13(1):119. |
63 | MCLOUGHLIN T, RANDALL BABBITT W, HIMMER P A,et al.Auger electron spectroscopy for surface ferroelectric domain differentiation in selectively poled MgO:LiNbO3[J].Optical Materials Express,2020,10(10):2379. |
64 | MCLOUGHLIN T, RANDALL BABBITT W, NAKAGAWA W.Nano-scale ferroelectric domain differentiation in periodically poled lithium niobate with auger electron spectroscopy[J].Optics Continuum,2022,1(4):649. |
65 | ZHI Yanan, SHEN Yanting, ZHU Yongjian,et al.Polarization state dependence of laser-induced domain nucleation in lithium niobate crystals investigated by digital holography[J].Applied Optics,2020,59(32):10026-10034. |
66 | KUZNETSOV D K, CHEZGANOV D S, MINGALIEV E A,et al.Visualization of nanodomain structures in lithium niobate and lithium tantalate crystals by scanning electron microscopy[J].Ferroelectrics,2016,503(1):60-67. |
67 | WANG Zijie, WANG Chunhua, YU Huakang.Advances in nonlinear photonic devices based on lithium niobate waveguides[J].Journal of Physics D Applied Physics,2023,56(8):083001. |
68 | QI Yifan, LI Yang.Integrated lithium niobate photonics[J].Nanophotonics,2020,9(6):13. |
69 | ZHU Di, SHAO Linbo, YU Mengjie,et al.Integrated photonics on thin-film lithium niobate[EB/OL].[2023-09-28].http://arxiv.org/abs/2102.11956. |
70 | LUO Qiang, BO Fang, KONG Yongfa,et al.Advances in lithium niobate thin-film lasers and amplifiers:A review[J].Advanced Photonics,2023,5(3):034002. |
71 | CAI Lutong, KONG Ruirui, WANG Yiwen,et al.Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film[J].Optics Express,2015,23(22):29211-29221. |
72 | SIEW S Y, CHEUNG E J H, LIANG Haidong,et al.Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening[J].Optics Express,2018,26(4):4421-4430. |
73 | WU Rongbo, WANG Min, XU Jian,et al.Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface ro-ughness[J].Nanomaterials,2018,8(11):910. |
74 | ZHANG Yuting, LI Hao, DING Tingting,et al.Scalable,fiber-compatible lithium-niobate-on-insulator micro-waveguides for efficient nonlinear photonics[J].Optica,2023,10(6):688. |
75 | LI Mingxiao, LING Jingwei, HE Yang,et al.Lithium niobate photonic-crystal electro-optic modulator[J].Nature Communications,2020,11:4123. |
76 | RAO A, FATHPOUR S.Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics[J].IEEE Journal of Selected Topics in Quantum Electronics,2018,24(6):8200912. |
77 | WANG Cheng, ZHANG Mian, CHEN Xi,et al.Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J].Nature,2018,562:101-104. |
78 | YANG Fan, FANG Xiansong, CHEN Xinyu,et al.Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth[J].Chinese Optics Letters,2022,20(2):022502. |
79 | LIN Qijing, HU Yuanzhi, LI Yang,et al.Versatile tunning of compact microring waveguide resonator based on lithium niobate thin films[J].Photonics,2023,10(4):424. |
80 | ZHANG Jiaxin, PAN Bincheng, LIU Weixi,et al.Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity[J].Optics Express,2022,30(12):20839-20846. |
81 | GHONAME A O, HASSANIEN A E, CHOW E,et al.Spiral waveguide Bragg grating modulator on thin-film Z-cut lithium nioba-te[J].Journal of the Optical Society of America B Optical Physics,2023,40(5):D38. |
82 | 史国强,徐珂,陈昆峰,等.介尺度设计功能新材料研究进展[J].无机盐工业,2023,55(3):1-9. |
SHI Guoqiang, XU Ke, CHEN Kunfeng,et al.Research progress of mesoscale design of novel functional materials[J].Inorganic Chemicals Industry,2023,55(3):1-9. | |
83 | SHI Guoqiang, CHEN Kunfeng, XUE Dongfeng.Searching for new degrees of freedom towards photoelectric functional cryst-als[J].Chinese Journal of Structural Chemistry,2023,42(7):100124. |
84 | CHENG Ran, HUANG Shuai, XU Qiang,et al.Research progress of lithium niobate waveguide and its application in quantum information technology[C]//2021 Photonics & Electromagnetics Research Symposium(PIERS).Hangzhou:The Electromagnetics Academy.2021:877-896. |
85 | RAO A, NADER N, STEVENS M J,et al.Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides[C]//2018 Conference on Lasers and Electro-Optics (CLEO).San Jose:The Optical Society of America.2018:1-2. |
86 | ZHAO Jie, MA Chaoxuan, RÜSING M,et al.High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides[J].Physical Review Letters,2020,124(16):163603. |
87 | LIU Yuting, XING Junjie, XIA Zhiguang,et al.All-fiber telecom band energy-time entangled biphoton source[J].Chinese Optics Letters,2023,21(3):032701. |
88 | LIANG Longyue, LIANG Junsheng, YAO Quan,et al.Compact all-fiber polarization-independent up-conversion single-photon detector[J].Optics Communications,2019,441:185-189. |
89 | CHEN Qianyuan, MAO Song, YIN Zhenping,et al.Compact and efficient 1064 nm up-conversion atmospheric lidar[J].Optics Express,2023,31(15):23931-23943. |
90 | YU Yong, MA Fei, LUO Xiyu,et al.Entanglement of two quantum memories via fibres over dozens of kilometres[J].Nature,2020,578:240-245. |
91 | MUNISHA B, MISHRA B, NANDA J.Hexagonal yttrium manganite:A review on synthesis methods,physical properties and applications[J].Journal of Rare Earths,2023,41(1):19-31. |
92 | DAI Li, LIU Chunrui, YAN Zhehua,et al.Effect of dopant concentration on the spectra characteristic in Zr4+ doped Yb:Nd:LiNbO3 crystals[J].Journal of Rare Earths,2017,35(8):761- 766. |
93 | DUTTA S, ZHAO Yuqi, SAHA U,et al.An atomic frequency comb memory in rare-earth doped thin-film lithium niobate[C]//2022 Conference on Lasers and Electro-Optics (CLEO).San Jose:Optica Publishing Group.2022:1-2. |
[1] | 李萍, 李军, 陈明. 失效锂萃取剂中Fe(Ⅲ)的回收及制备电池级磷酸铁的工艺研究[J]. 无机盐工业, 2024, 56(10): 28-37. |
[2] | 王君婷, 马航, 查坐统, 万邦隆, 张振环. 磷酸铁工业废水处理工艺研究进展[J]. 无机盐工业, 2024, 56(6): 26-33. |
[3] | 李快, 栗照帅, 董庭轩, 李丹, 郭生伟, 韩凤兰. 湿法磁选对粉煤灰中铁和重金属元素的分布影响研究[J]. 无机盐工业, 2024, 56(4): 98-104. |
[4] | 许丽, 张强. 铁尾矿粉水泥基材料的性能实验研究[J]. 无机盐工业, 2023, 55(6): 116-123. |
[5] | 刘蕊, 高玮, 张文静, 安鸿雪, 李再兴. 菌渣生物炭负载四氧化三铁催化降解罗丹明B[J]. 无机盐工业, 2023, 55(4): 111-119. |
[6] | 胡骆兴,黄齐茂,屈泓佑. 盐酸法钛白粉新工艺副产氯化亚铁制备四氧化三铁[J]. 无机盐工业, 2023, 55(1): 118-123. |
[7] | 贾志奇,聂慧敏,赵永祥. Fe0/C诱导铜盐还原耦合化学沉淀法脱除废水硫氰酸盐[J]. 无机盐工业, 2023, 55(1): 129-135. |
[8] | 郑彬,蒋亮,韩凤兰,马鸿儒,祁志宏,苏辉. 铜渣复合硅锰水淬渣后的改质提铁研究[J]. 无机盐工业, 2023, 55(1): 136-143. |
[9] | 朱莞烨,唐定,池荷婷,廖祥辉,庄荣传,王乾坤,沈青峰. 结晶法提纯钛白副产硫酸亚铁中杂质去除规律的研究[J]. 无机盐工业, 2022, 54(7): 105-109. |
[10] | 路正,陈昆峰,薛冬峰. 高热稳定性α-氧化铁的宏量制备及其电化学性能研究[J]. 无机盐工业, 2022, 54(3): 45-50. |
[11] | 王晓欢,李胜浩,史志铭,王俊,新巴雅尔,刘亮. 钛酸亚铁材料的研究现状[J]. 无机盐工业, 2022, 54(1): 12-17. |
[12] | 宋瑾,吴凤龙,王岳俊. 不同负载方式Fe/改性MCM-41催化剂的制备及其降解亚甲基蓝性能研究[J]. 无机盐工业, 2021, 53(11): 122-128. |
[13] | 王惠娟,王春玉,张琼. 二维层状纳米片材料制备及在电解水中应用的研究进展[J]. 无机盐工业, 2021, 53(11): 25-29. |
[14] | 王力霞,任冬梅,王琼,常春. 磁性金属有机框架材料制备及吸附性能研究[J]. 无机盐工业, 2021, 53(9): 46-50. |
[15] | 刘茂举,龚福忠,铁云飞,李艳琳. 反渗透膜法处理磷酸铁生产废水的零排放工艺研究[J]. 无机盐工业, 2021, 53(8): 101-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|