无机盐工业 ›› 2023, Vol. 55 ›› Issue (4): 111-119.doi: 10.19964/j.issn.1006-4990.2022-0370
刘蕊1(), 高玮1, 张文静2,3, 安鸿雪2,3, 李再兴2,3(
)
收稿日期:
2022-06-17
出版日期:
2023-04-10
发布日期:
2023-04-13
通讯作者:
李再兴(1973— ),男,博士,教授,主要研究方向为水污染治理与控制;E-mail:li_zaixing@163.com。作者简介:
刘蕊(1997— ),女,硕士研究生,主要研究方向为水污染治理与控制;E-mail:lr15511360119@163.com。
基金资助:
LIU Rui1(), GAO Wei1, ZHANG Wenjing2,3, AN Hongxue2,3, LI Zaixing2,3(
)
Received:
2022-06-17
Published:
2023-04-10
Online:
2023-04-13
摘要:
考虑到催化剂载体的高成本,寻求廉价的载体制备方案合成催化剂具有重要意义。通过热解青霉素菌渣制备多孔生物炭载体,以共沉淀法负载四氧化三铁,合成催化剂Fe3O4@PRBC。通过SEM、XRD、FT-IR和孔隙结构分析对催化剂进行表征,并以罗丹明B(RhB)为目标降解污染物,考察了不同体系、催化剂用量、双氧水用量、溶液pH和RhB浓度对处理效果的影响。结果显示,四氧化三铁成功负载于生物炭上,Fe3O4@PRBC表面呈粗糙多孔状,比表面积达到1 210.54 m²/g。其中H2O2/Fe3O4@PRBC体系表现出突出的催化性能,当Fe3O4@PRBC用量为0.8 g/L、双氧水用量为30 mmol/L时、在pH=3~11时,RhB的降解率均超过90%。催化循环4次,降解率仍能达到90%。自由基淬灭实验显示,催化降解RhB的主要活性物质为·OH和·O2-。对实际印染废水进行类芬顿降解实验,COD去除率高于80%,色度去除率达到100%。
中图分类号:
刘蕊, 高玮, 张文静, 安鸿雪, 李再兴. 菌渣生物炭负载四氧化三铁催化降解罗丹明B[J]. 无机盐工业, 2023, 55(4): 111-119.
LIU Rui, GAO Wei, ZHANG Wenjing, AN Hongxue, LI Zaixing. Catalytic degradation of Rhodamine B by ferroferric oxide-loaded bacterial residue biochar[J]. Inorganic Chemicals Industry, 2023, 55(4): 111-119.
表2
不同催化剂催化降解RhB效果
样品 | 制备方法 | 反应条件 | 降解率/% | 循环性能 |
---|---|---|---|---|
Fe3O4@PRBC | 青霉素菌渣热解制备生物炭、共沉淀法负载Fe3O4 | pH=3、催化剂用量为0.8 g/L、H2O2用量 为30 mmol/L | 97.30 | 循环4次,降解率仍大于90% |
磁性Fe3O4纳米微球[ | 乙二醇溶剂热法制备Fe3O4微球 | pH=3、催化剂用量为1.2 g/L、H2O2用量 为140 mmol/L | 接近完全去除 | 未研究 |
Fe3O4@NiSiO3纳米颗粒[ | 采用Ni刻蚀Fe3O4@SiO2外壳制备 Fe3O4@NiSiO3纳米颗粒 | pH=5.5、催化剂用量为1.0 g/L、H2O2用量 为2.50% | 大于95 | 循环5次,未有明显下降 |
BC-FeOOH[ | 水热法制备BC-FeOOH | 催化剂用量为0.6 g/L、H2O2用量为10 mmol/L | 达到90 | 循环3次,降解率在 80%左右 |
Fe0-MF-RGO[ | 磁性还原氧化石墨烯负载零价纳米铁 | pH=7、催化剂用量为1.0 g/L、H2O2用量 为0.8 mmol/L | 98.17 | 循环5次,降解率为 72.97% |
Fe/SBA-15[ | 以介孔二氧化硅SBA-15为载体,采用等体积浸渍法制备Fe/SBA-15 | pH=5.4、催化剂用量为0.15 g/L、n(H2O2)/ n(Fe3+)=2 000 | 约93 | 循环6次,降解率维持在80% |
1 | RIBEIRO A R, NUNES O C, PEREIRA M F R,et al.An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU[J].Environment International,2015,75:33-51. |
2 | JIANG Yu, RAN Jiabing, MAO Kang,et al.Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments[J].Ecotoxicology and Environmental Safety,2022,236.Doi:10.1016/j.ecoenv.2022.113464. |
3 | GUO Li, ZHANG Kailai, HAN Xuanxuan,et al.Highly efficient visible-light-driven photo-Fenton catalytic performance over FeOOH/Bi2WO6 composite for organic pollutant degradation[J].Journal of Alloys and Compounds,2020,816.Doi:10.1016/j.jallcom.2019.152560. |
4 | JIAO Yue, WAN Caichao, BAO Wenhui,et al.Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B[J].Carbohydrate Polymers,2018,189:371-378. |
5 | ORTIZ-ZARCO E, SOLIS-CASADOS D, ESCOBAR-ALARCÓN L,et al.Visible light-driven photocatalyst:An iron(Ⅲ) coordination compound in Rhodamine B degradation[J].Journal of Photochemistry and Photobiology A:Chemistry,2022,424.Doi:10.1016/j.jphotochem.2021.113629. |
6 | NGUYEN L T T, VO D V N, NGUYEN L T H,et al.Synthesis,characterization,and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination[J].Environmental Technology & Innovation,2022,25.Doi:10.1016/j.eti.2021.102130. |
7 | VAN VIET P, VAN CHUYEN D, HIEN N Q,et al.Visible-light-induced photo-Fenton degradation of Rhodamine B over Fe2O3-diatomite materials[J].Journal of Science:Advanced Materials and Devices,2020,5(3):308-315. |
8 | IQBAL A, CEVIK E, ALAGHA O,et al.Highly robust multilayer nanosheets with ultra-efficient batch adsorption and gravity-driven filtration capability for dye removal[J].Journal of Industrial and Engineering Chemistry,2022,109:287-295. |
9 | LIU Meng, YIN Wei, ZHAO Tianlei,et al.High-efficient removal of organic dyes from model wastewater using Mg(OH)2-MnO2 nanocomposite:Synergistic effects of adsorption,precipitation,and photodegradation[J].Separation and Purification Technology,2021,272.Doi:10.1016/j.seppur.2021.118901. |
10 | RINGWAL S, BARTWAL A S, SATI S C.Photo-catalytic degradation of different toxic dyes using silver nanoparticles as photo-catalyst,mediated via Citrus aurantium peels extract[J].Journal of the Indian Chemical Society,2021,98(12).Doi:10.1016/j.jics.2021.100221. |
11 | YU Chunxiu, XIONG Zhaokun, ZHOU Hongyu,et al.Marriage of membrane filtration and sulfate radical-advanced oxidation processes(SR-AOPs) for water purification:Current developments,challenges and prospects[J].Chemical Engineering Journal,2022,433.Doi:10.1016/j.cej.2021.133802. |
12 | LIN Ruoyun, LI Yang, YONG Tianzhi,et al.Synergistic effects of oxidation,coagulation and adsorption in the integrated Fenton-based process for wastewater treatment:A review[J].Journal of Environmental Management,2022,306.Doi:10.1016/j.jenvman. 2022.114460. |
13 | LU Sen, LIU Libing, DEMISSIE H,et al.Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment:A revi-ew[J].Environment International,2021,146.Doi:10.1016/j.envint.2020.106273. |
14 | REKHATE C V, SRIVASTAVA J K.Recent advances in ozone-based advanced oxidation processes for treatment of wastewater-A review[J].Chemical Engineering Journal Advances,2020,3.Doi:10.1016/j.ceja.2020.100031. |
15 | 侯琳萌,清华,吉庆华.类芬顿反应的催化剂、原理与机制研究进展[J].环境化学,2022,41(6):1843-1855. |
HOU Linmeng, QING Hua, JI Qinghua.Research progress on catalysts,principles and mechanisms of Fenton-like reactions[J].Environmental Chemistry,2022,41(6):1843-1855. | |
16 | NIDHEESH P V, GOPINATH A, RANJITH N,et al.Potential role of biochar in advanced oxidation processes:A sustainable approach[J].Chemical Engineering Journal,2021,405.Doi:10.1016/j.cej.2020.126582. |
17 | TAN Xiaofei, LIU Yunguo, GU Yanling,et al.Biochar-based nano-composites for the decontamination of wastewater:A review[J].Bioresource Technology,2016,212:318-333. |
18 | 王秋菊.抗生素菌渣与污泥热解资源化利用效能与机理研究[D].哈尔滨:哈尔滨工业大学,2021. |
WANG Qiuju.Research on the efficiencies and mechanisms of antibiotic residues and sludge pyrolysis for resource utilization[D].Harbin:Harbin Institute of Technology,2021. | |
19 | WANG Tao, LIU Xiqing, XU Ting,et al.Lignin-controlled photocatalyst of porous BiVO4-C nanocomposite for enhancing photocatalytic activity toward pollutant under visible-light[J].Applied Surface Science,2020,523.Doi:10.1016/j.apsusc.2020.146401. |
20 | 李安玉,李双莉,余碧戈,等.镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理[J].化工学报,2020,71(4):1683-1695. |
LI Anyu, LI Shuangli, YU Bige,et al.Adsorption of ammonia nitrogen and phosphorus by magnesium impregnated biochar:Preparation optimization and adsorption mechanism[J].CIESC Journal,2020,71(4):1683-1695. | |
21 | CHENG Zhuoying, LI Shaopeng, NGUYEN T T,et al.Biochar loaded on MnFe2O4 as Fenton catalyst for Rhodamine B removal:Characterizations,catalytic performance,process optimization and mechanism[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,631.Doi:10.1016/j.colsurfa. 2021.127651. |
22 | BAIG M M, ZULFIQAR S, YOUSUF M A,et al.Dy x MnFe2- x O4 nanoparticles decorated over mesoporous silica for environmental remediation applications[J].Journal of Hazardous Materials,2021,402.Doi:10.1016/j.jhazmat.2020.123526. |
23 | ZHANG Yingshuang, JIANG Hongru, WANG Hui,et al.Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium persulfate:Process and mechanism[J].Journal of Hazardous Materials,2020,389.Doi:10.1016/j.jhazmat.2019.121918. |
24 | MANEERUNG T, LIEW J, DAI Yanjun,et al.Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption:Kinetics,isotherms and thermodynamic studies[J].Bioresource Technology,2016,200:350-359. |
25 | KARKI H P, OJHA D P, JOSHI M K,et al.Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite[J].Applied Surface Science,2018,435:599-608. |
26 | LI Mengxue, LIU Haibo, CHEN Tianhu,et al.Synthesis of magnetic biochar composites for enhanced uranium(Ⅵ) adsorption[J].Science of the Total Environment,2019,651:1020-1028. |
27 | LIU Banghai, GUO Wanqian, WANG Huazhe,et al.B-doped graphitic porous biochar with enhanced surface affinity and electron transfer for efficient peroxydisulfate activation[J].Chemical Engineering Journal,2020,396.Doi:10.1016/j.cej.2020.125119. |
28 | HUANG Ruixiong, FANG Zhanqiang, YAN Xiaomin,et al.Heterogeneous sono-Fenton catalytic degradation of Bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition[J].Chemical Engineering Journal,2012,197:242-249. |
29 | YE Guirong, ZHOU Jinghong, HUANG Renting,et al.Magnetic sludge-based biochar derived from Fenton sludge as an efficient heterogeneous Fenton catalyst for degrading Methylene blue[J].Journal of Environmental Chemical Engineering,2022,10(2).Doi:10.1016/j.jece.2022.107242. |
30 | CHEN Meiqing, CHEN Zhihao, WU Pingxiao,et al.Simultaneous oxidation and removal of arsenite by Fe(Ⅲ)/CaO2 Fenton-like technology[J].Water Research,2021,201.Doi:10.1016/j.watres.2021.117312. |
31 | VILARDI G, SEBASTIANI D, MILIZIANO S,et al.Heterogeneous nZVI-induced Fenton oxidation process to enhance biodegradability of excavation by-products[J].Chemical Engineering Journal,2018,335:309-320. |
32 | FU Dun, KURNIAWAN T A, LI Heng,et al.Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar[J].Environmental Pollution,2021,290.Doi:10.1016/j.envpol.2021. 118062. |
33 | GAO Jing, LIU Yutang, XIA Xinnian,et al.Fe1- x Zn x S ternary solid solution as an efficient Fenton-like catalyst for ultrafast degradation of phenol[J].Journal of Hazardous Materials,2018,353:393-400. |
34 | 王晓瑾,李育珍,王梅,等.磁性Fe3O4纳米微球与H2O2类芬顿体系催化氧化罗丹明B[J].太原理工大学学报,2019,50(2):167-172. |
WANG Xiaojin, LI Yuzhen, WANG Mei,et al.Catalytic oxidation of Rhodamine B by magnetic Fe3O4 nanospheres and H2O2 Fenton-like system[J].Journal of Taiyuan University of Technology,2019,50(2):167-172. | |
35 | 牛建瑞,贾秀秀,李宗泽,等.Fe3O4@NiSiO3催化剂制备及其催化芬顿氧化降解染料性能[J].科学技术与工程,2018,18(14):298-304. |
NIU Jianrui, JIA Xiuxiu, LI Zongze,et al.Preparation of Fe3O4@NiSiO3 nanocatalyst and performance of catalytic Fenton oxidation to degrade dye wastewater[J].Science Technology and Engineering,2018,18(14):298-304. | |
36 | 张晓,胡春,张丽丽,等.生物质炭强化FeOOH类芬顿催化性能及其机制[J].环境科学学报,2020,40(11):3895-3904. |
ZHANG Xiao, HU Chun, ZHANG Lili,et al.Enhanced Fenton-like catalytic performance of FeOOH by biochar and its mechanism[J].Acta Scientiae Circumstantiae,2020,40(11):3895-3904. | |
37 | 邓翠萍,谢裕畴,汪文思,等.磁性还原氧化石墨烯负载Fe0对罗丹明B的类芬顿降解[J].环境工程学报,2017,11(6):3499-3506. |
DENG Cuiping, XIE Yuchou, WANG Wensi,et al.Heterogeneous Fenton degradation of Rhodamine-B by Fe0 assembled on magnetic reduced graphene oxide[J].Chinese Journal of Environmental Engineering,2017,11(6):3499-3506. | |
38 | 胡龙兴,许丹丹,邹联沛,等.介孔Fe/SBA-15非均相芬顿氧化水中难降解染料罗丹明B[J].物理化学学报,2015,31(4):771-782. |
HU Longxing, XU Dandan, ZOU Lianpei,et al.Heterogeneous Fenton oxidation of Refractory dye Rhodamine B in aqueous solution with mesoporous Fe/SBA-15[J].Acta Physico-Chimica Sinica,2015,31(4):771-782. |
[1] | 刘光明. C3N5/NH2-MIL-125(Ti)改性混凝土砂浆光催化和力学性能研究[J]. 无机盐工业, 2025, 57(1): 120-128. |
[2] | 王萍, 徐荣声, 孙冬, 史小红, 徐炜, 李梅. 氮掺杂生物炭的制备及其对亚甲基蓝的吸附性能研究[J]. 无机盐工业, 2024, 56(9): 117-127. |
[3] | 宋朝霞, 刘永康, 郭耀坤, 王腾飞. 小麦秸秆生物炭对孔雀石绿吸附性能的研究[J]. 无机盐工业, 2024, 56(9): 128-135. |
[4] | 孙海杰, 程圆, 田源, 柳宏岩, 陈志浩. BiOI/g-C3N4催化剂的制备及其光催化降解罗丹明B性能[J]. 无机盐工业, 2023, 55(8): 36-44. |
[5] | 陈彰旭, 朱丹琛, 傅明连. g-C3N4/TiO2复合材料制备及其处理罗丹明B研究[J]. 无机盐工业, 2023, 55(7): 130-136. |
[6] | 范方方, 仝仲凯, 左卫元. 钙改性花生壳生物炭对废水中四环素的吸附研究[J]. 无机盐工业, 2023, 55(6): 109-115. |
[7] | 郜飞, 董良飞, 葛玉龙, 唐园园, 李芬. 污泥生物炭/凹凸棒土的制备及其吸附性能研究[J]. 无机盐工业, 2023, 55(5): 91-99. |
[8] | 陈修栋,张义焕,张浩东,盛冬河,吴嘉伟,刘金杭,严平,占昌朝. β-FeOOH改性蒙脱土复合过氧化氢对罗丹明B的降解[J]. 无机盐工业, 2022, 54(5): 116-120. |
[9] | 褚佳欢,汤嘉成,朱媛,张进. g-C3N4/Bi2MoO6复合光催化剂的制备及性能研究[J]. 无机盐工业, 2022, 54(11): 131-136. |
[10] | 管志远,张晓伟,王觅堂,张栋梁,朱昌乐. 稀土元素铈钕共掺氧化锌对降解罗丹明B光催化性能的影响[J]. 无机盐工业, 2022, 54(10): 155-162. |
[11] | 王力霞,任冬梅,王琼,常春. 磁性金属有机框架材料制备及吸附性能研究[J]. 无机盐工业, 2021, 53(9): 46-50. |
[12] | 梁宁,莫福金,周街荣,王军正. 污泥生物炭制备及其对磷的吸附性能研究[J]. 无机盐工业, 2021, 53(6): 174-179. |
[13] | 黄夏梦. 光催化材料Bi4O7/BiOBr的制备及其光催化性能研究[J]. 无机盐工业, 2021, 53(4): 112-116. |
[14] | 朱丹琛,李名洁,陈彰旭,林倩. 水热法合成二氧化锰及其对染料的脱色性能研究[J]. 无机盐工业, 2021, 53(11): 60-65. |
[15] | 李海朝,纪青松,张净净,杨斯乔. 活性生物猪骨炭纯化盐湖工业氯化钾[J]. 无机盐工业, 2020, 52(8): 76-77. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 429
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|